

By
Joseph D. Booth

Foreword by Daniel Jebaraj

 3

Copyright © 2019 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story behind the Succinctly Series of Books ... 9

Note on Angular Succinctly ...11

About the Author ..12

Chapter 1 Introduction ...13

CSS styling ...13

JavaScript coding ...13

Third-party libraries ..14

Why AngularJS? ...14

Angular 2 ..15

Angular versions ...16

Web components ...17

Summary ..21

Chapter 2 Dev Environment ..22

Language ...22

Editor ..22

Node Package Manager (NPM) ..23

Summary ..25

Chapter 3 Angular CLI ...26

Getting Angular CLI ..26

Creating a new project ..27

Summary ..30

Chapter 4 Files and Folders ..31

 5

Folder structure ..31

GitHub files ...31

.editorconfig ..32

angular.json ..33

package.json ..34

tsLint.json ...37

src folder ..37

Summary ..38

Chapter 5 Customization ...39

Adding libraries...39

angular.json ..39

Assets ..40

Environments ...41

Summary ..41

Chapter 6 Your Environment ...42

Your folder structure ...42

Summary ..42

Chapter 7 Exploring Hello World ..43

Start Angular CLI ..43

Modules ...44

Our main program ..45

Index.html ...46

Summary ..48

Chapter 8 Tweaking It a Bit ...49

ng serve ...49

 6

Summary ..49

Chapter 9 Components ..50

Component files ...50

Summary ..57

Chapter 10 Templates ..58

Template declaration ..58

HTML ...58

Interpolation ...59

Expressions ..59

Template statements ..62

Displaying data in templates ...63

Summary ..67

Chapter 11 Modules ...68

Basic module options ...68

app.module.ts ...70

main.ts ...71

Summary ..71

Chapter 12 Our Application ...72

Screen mockups ...72

Summary ..74

Chapter 13 Menu Navigation ...75

Base href ..75

App component ..76

Placeholder components ..77

Route definitions ...78

 7

app-routing.module.ts ...78

App module ..80

Navigation ..81

Summary ..82

Chapter 14 Services and Interfaces ..83

Standings page ..83

Data model ...84

Service design ..85

Injectable ..87

Consuming the service ...89

Summary ..93

Chapter 15 Standings ..94

Standings component ...94

Standings display ... 100

Summary .. 101

Chapter 16 Editing Data ... 102

Data binding ... 102

Two-way binding .. 105

Summary .. 106

Chapter 17 Scoring .. 107

Scoring component .. 107

Scoring template .. 108

Class code ... 110

Summary .. 113

Chapter 18 Getting Data Using HTTP ... 114

 8

Web services .. 114

JSON format .. 114

Web commands ... 115

Angular HTTP .. 116

Summary .. 121

Chapter 19 Summary ... 122

Appendix 1 Component Metadata ... 123

Appendix 2 Template Syntax .. 124

 9

The Story behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

 10

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 11

Note on Angular Succinctly

Because a new major version of Angular is released every six months, Succinctly series ebooks
on the basics of Angular development will be titled simply Angular Succinctly from this edition
on. This ebook covers Angular 7.

 12

About the Author

Joseph D. Booth has been programming since 1981 in a variety of languages including BASIC,
Clipper, FoxPro, Delphi, Classic ASP, Visual Basic, Visual C#, and the .NET Framework. He
has also worked in various database platforms, including DBASE, Paradox, Oracle, and SQL
Server.

He is the author of GitHub Succinctly, Accounting Succinctly, Regular Expressions Succinctly,
Visual Studio Add-Ins Succinctly, and Natural Language Processing Succinctly from Syncfusion,
as well as six books on Clipper and FoxPro programming, network programming, and
client/server development with Delphi. He has also written several third-party developer tools,
including CLIPWKS, which allows developers to programmatically create and read native Lotus
and Excel spreadsheet files from Clipper applications.

Joe has worked for a number of companies including Sperry Univac, MCI-WorldCom, Ronin,
Harris Interactive, Thomas Jefferson University, People Metrics, and Investor Force. He is one
of the primary authors of Results for Research (market-research software), PEPSys (industrial-
distribution software), and a key contributor to AccuBuild (accounting software for the
construction industry).

He has a background in accounting, having worked as a controller for several years in the
industrial distribution field, but his real passion is computer programming.

In his spare time, Joe is an avid tennis player. He also practices yoga and martial arts, and
plays with his first granddaughter, Blaire. You can visit his website here.

https://www.syncfusion.com/resources/techportal/details/ebooks/GitHub_Succinctly
https://www.syncfusion.com/resources/techportal/details/ebooks/accounting
https://www.syncfusion.com/resources/techportal/details/ebooks/regularexpressions
https://www.syncfusion.com/resources/techportal/details/ebooks/visualstudio
https://www.syncfusion.com/ebooks/natural_language_processing_succinctly
http://www.joebooth-consulting.com/

 13

Chapter 1 Introduction

Imagine, if you will, doing web development in an environment where you can control every
aspect of the page you are building, and customize it to your heart’s content. Don’t like the white
background on your page? You can change it easily using CSS. Want to react when your user
moves into a field? You can hook into that event. It is a powerful environment—you develop
your content and can leave its presentation as is, or customize it as much as desired.

CSS styling

For example, the following line of CSS sets your document to an antique white background
with a navy font color.

Code Listing 1

 body {

 background-color: antiquewhite;

 color: navy;

 }

It’s powerful, quick, and easy!

JavaScript coding

You can hook into the event system just as easily by attaching event handlers to your elements.

Code Listing 2

<button id="btn" onclick="ShowBtn();">Hello World!</button>

Then, you add code to perform whatever function you like.

Code Listing 3

 function ShowBtn() {

 theBtn = document.getElementById("btn").textContent;

 alert(theBtn);

 }

 14

Third-party libraries

Once you start working in this environment, you begin to realize there are subtle differences
between CSS and JavaScript, depending on the browser the user is running. One approach is
to attempt to code around these differences, but that adds more complexity to this environment.
Fortunately, there are third-party libraries that hide the complexity from you by handling the
browser differences internally.

So, to keep focused on your application, rather than browser differences, you come to rely on
third-party software libraries like jQuery, Knockout, and Kendo UI.

The good

These third-party libraries hide this complexity and provide great functionality to make
development much easier. For example, we can use jQuery’s on() function to hide the browser

differences in event handling.

The bad

However, these third-party libraries have access to the very same elements on the page that
you do. So your nice page with the antique white background might be changed to a dark color
background because a library replaced your CSS class name with its own. Oh, and that
JavaScript code you wrote for when the button gets clicked? Well, it is possible a third-party
library likes the function name ShowBtn(), so its method gets called instead of yours.

There are workarounds that most web developers are familiar with, such as loading libraries in a
particular order, adding qualifiers to all your class names and function calls, and loading your
CSS and JavaScript last. Some even go as far as not relying on third-party libraries.

Why AngularJS?

AngularJS is an open-source JavaScript framework developed and maintained by Google, Inc.
and several open-source contributors. It was originally released in 2009, primarily aimed at
making the HTML syntax more capable for application development. It included concepts such
as data binding and HTML templates. In its simplest form, an AngularJS application would
consist of an HTML page (with embedded “variables”) and a JavaScript object (called a
controller) with properties and methods. The developer would manipulate the controller
properties, and Angular would update the DOM (HTML page) to reflect the changing values.

Angular 2 was released in 2014 and completely rewritten to take advantage of new features that
allow the development of components. It is a different approach to front-end development;
instead of building a page and hoping your third-party libraries don’t conflict with your own code,
you build components that will work the way you’d expect, and then use Angular to display the
components to your user.

 15

As we work through the book, we will develop components and use existing components to
build our webpages. As Angular continues to develop, you will see many third-party components
that can be used in an Angular application. This will allow us to do front-end web development
much like other environments, selecting the components we want to use and tying them
together into an integrated product.

Angular 2

Angular 2 is a complete rewrite of the Angular library, and is not backwards compatible with
Angular 1 applications. This caused some concern among developers, but the Angular team
wanted to take advantage of many new features that were not around in 2009. Angular 2 was
about making the most of new browser developments to move forward and create better
applications.

Some of the new web features that Angular embraces are:

ECMAScript

ECMAScript is a scripting language specification standardized by ECMA International.
JavaScript is one of the most popular implementations of ECMAScript for client-side web
applications. It was first published in 1997, and has grown over the years. The most recent
version (ECMAScript 2018) adds substantial syntax improvements for writing complex scripting
applications. While not every browser supports all the new features, ECMAScript is the future of
JavaScript.

Note: You can read about ECMAScript 6 in Matthew Duffield’s book ECMAScript 6
Succinctly, available from Syncfusion. Although not the current version, it’s a
good source for understanding the standard.

TypeScript

TypeScript is a superset of JavaScript developed and maintained by Microsoft. It adds features
to JavaScript, most notably data types for variables. It also adds many of the features in
ECMAScript (the scripting language most current browsers support). Angular itself is written in
TypeScript.

TypeScript files (.ts extension) are transpiled (meaning source code is converted to another
source language) into JavaScript files (.js extension). This allows developers to use the features
of TypeScript and still have browsers support and run the script.

We will use TypeScript in this book’s examples, but it’s okay if you are not familiar with the
language. Knowing JavaScript and any object-oriented language (such as C#) will allow you to
feel right at home with TypeScript. (Plus, Syncfusion has a book in the Succinctly series to help
you learn it if needed.)

https://www.syncfusion.com/resources/techportal/details/ebooks/ECMAScript_6_Succinctly
https://www.syncfusion.com/resources/techportal/details/ebooks/ECMAScript_6_Succinctly
https://www.syncfusion.com/resources/techportal/details/ebooks/typescript

 16

Dependency injection

Dependency injection is a software design pattern that attempts to reduce tightly coupled
components by changing how component dependencies are handled. For example, if a logging
component needs to notify users when something is amiss, it might be tempting to access
another component (NotifyUsersByEMail, perhaps) within the logging component. While

coding is a bit simpler, it creates a dependent relationship between the logging and the
NotifyUsersByEMail component.

These dependencies make it difficult to test and debug components individually. For example, if
you expect an event to be logged and users to be notified but it doesn’t happen, you need to
determine if the mail component failed or the log component failed. Also, if the mail component
changes, then the logging component must be updated to accommodate the changes.

A common approach to solving this is to write an interface that describes how the logging
component plans to interact with the notification tasks it needs. Namely, it defines how to
specify users, the subject and message, and how to invoke the send method. The logging

component doesn’t know the details, just that it can access another object that matches the
interface. The object itself gets passed into the component (often from the constructor) for the
base component to use. The logging object doesn’t care about the particulars of the object, only
that it has the agreed upon fields and methods.

Such an approach makes testing easier and accommodates changes as well. For example, if
we wrote a NotifyUsersBySMS object, as long as it offers the same methods the Logging

component expects, we can change the notification behavior simply by passing in a different
component to the constructor.

Angular versions

Angular is a constantly evolving and improving framework. The current version of the framework
is 7.0. In general, new major releases are planned every six months and the new release is
backward compatible with the last major release. When possible, you should update to the new
major release fairly soon after it is stable.

Versioning

The Angular version number consists of a major, a minor, and a patch number. Major releases
(every six months) contain significant new features, and you will likely need some code
refactoring and update scripts to use the new release.

Minor releases contain smaller features that are almost always backward compatible. You can
likely use the release without code refactoring, but should explore the features to see ways to
improve your application.

Patch releases are usually bug fixes, and very low risk, meaning they are very unlikely to break
your application.

 17

This website is a good resource for staying current with the Angular release schedule. You can
also follow @angular on Twitter or subscribe to the Angular blog.

At the time of writing, Angular 7.0 is the current version.

Web components

Web components were first introduced in 2011, although components were a part of software
development for many years prior to that. The standards necessary to implement web
components are being worked on by the W3C, and they represent the future of web application
development.

Without web components

When you develop front-end code, you are generally using some JavaScript framework, and
possibly some CSS, sprinkling it throughout your HTML, and hoping that some subsequent CSS
or JavaScript files don’t come along and change all the code you’ve written.

Recently while working on a website, I found a JavaScript library that looked like it provided a
solution to an issue. I added the library and the CSS files to my layout page, and got the
functionality I wanted, with one nasty little side effect: the CSS changed all my <p> tags to be

text-align: center.

Front-end development becomes a matter of carefully combining JavaScript and CSS libraries
that hopefully don’t conflict with each other and produce the functionality we are trying to
implement.

Web components

Web components are essentially fully encapsulated HTML elements that the browser knows
how to display. Since the HTML and CSS are encapsulated in the component, the component
will always display the way it was designed, even if some later-loaded CSS style sheet changes
the presentation rules on HTML elements.

When you create an HTML page, you are defining the Document Object Model (DOM). The
DOM is a representation of your HTML (or XML, etc.) source code as a nested tree structure.
Browsers use various layout engines (such as WebKit or Gecko) to handle parsing the HTML
into a DOM. Once the DOM is built, JavaScript and CSS can manipulate the DOM. If you’ve
worked with jQuery or CSS, you’ve certainly seen selectors such as # (ID) or . (class) to get

particular DOM elements.

Shadow DOM

The Shadow DOM is an encapsulated DOM object that can be created from any existing DOM
element. The DOM element that creates the Shadow DOM is known as the ShadowHost. The

new element is referred to as the ShadowRoot. The following JavaScript fragment shows how to

create a Shadow DOM element.

https://angular.io/guide/releases
https://twitter.com/angular
https://blog.angular.io/?gi=3a332c6adf8b

 18

Code Listing 4

 <script>
 var ShadowHost = document.querySelector('button');
 var ShadowRoot = ShadowHost.createShadowRoot();
 ShadowRoot.innerHTML="Hello from Angular";
 </script>

Markup in the Shadow Root is not visible to the scripts outside of the Shadow DOM. The
purpose of the Shadow DOM is to provide an encapsulated snippet, safe from prying eyes.

If you explore the following example in Code Listing 5, you see that the HTML element contains
Hello, world. However, the script creates a ShadowRoot (if it does not yet exist) and sets the

innerHTML to "Hello from Angular". When the browser executes this code, the button’s

inner content gets replaced with whatever content is in the ShadowRoot.

Code Listing 5

 <body>
 <button id="btn" onclick="ShowBtn();" >Hello, world!</button>
 <script>
 var ShadowHost = document.querySelector('button');

if (ShadowHost.shadowRoot==null)
 {
 var ShadowRoot = ShadowHost.createShadowRoot();
 ShadowRoot.innerHTML="Hello from Angular";
 }
 </script>
 <script>
 function ShowBtn() {
 theBtn = document.getElementById("btn").innerHTML;
 alert(theBtn);
 }
 </script>
 </body>

However, when you click the button, the ShowBtn() function shows the content Hello, world,

not the content that the browser displayed from the ShadowRoot. This is an example of the

encapsulation and scoping necessary to build web components.

Note: Some browsers expose parts of the Shadow DOM to CSS through special
pseudo-selectors. Also, component authors can choose to expose some content,
particularly theming and styling.

 19

Template tag

Another piece of the component puzzle is the HTML <template> tag. This tag allows us to build

HTML fragments for later use. Content inside a template tag will not display, and is not active
(images won’t be downloaded, scripts won’t run, etc.).

Templates can contain HTML, CSS, and even JavaScript. They can be placed anywhere with
the DOM and stay inactive until you need them. The following is a simple template that draws a
border and shadow around an <h3> element and adds some text.

Code Listing 6

 <template>
 <style>
 h3 {
 color: darkblue;
 border:2px solid gray;
 box-shadow: 10px 10px 5px #0f0f0f;
 width:20%;
 margin-left:20px;
 padding-left:10px;
 }
 </style>
 <h3>From the Shadows… </h3>
 </template>

Now, when we create our Shadow Root, rather than rely on manipulating the innerHTML

property, we will plug the template code in. The <h3> style within our template, since it is in the

Shadow Root, will not impact any other <h3> styling the page might be using.

Code Listing 7

var ShadowHost = document.getElementById('HostDiv');
if (ShadowHost.shadowRoot==null) // See if the element has a shadow root?
 {
 var ShadowRoot = ShadowHost.createShadowRoot();
 // Get the template
 var tmpl = document.querySelector('template');
 ShadowRoot.appendChild(document.importNode(tmpl.content, true));
 }

We grab the template element (we can use getElementById() if we have a number of different

templates) and append it into the ShadowRoot element. Our screen will now show the following

in the HostDiv element.

 20

Figure 1: Shadow Root

Getting content from the host

Often, our template code will want to get its content from the host element, rather than hard-
coding the content in the template code. For example, if our ShadowHost element looked like

the following:

Code Listing 8

<div id="HostDiv">The DIV</div>

We could replace our template’s HTML line:

Code Listing 9

<h3>From the Shadows… </h3>

with the following fragment:

Code Listing 10

<h3>Courtesy of the shadow host <content select="span"></content></h3>

When the template is inserted, it will grab the content of the ShadowHost’s tag and use

it instead.

Figure 2: Content from Shadow Host

Taken together, the Shadow DOM and the template system open the door to allow components
within the front-end development of webpages. And that is one of the biggest benefits Angular
provides.

 21

Summary

Angular takes advantage of web components and the Shadow DOM to support component-
driven development. In the rest of the book, we will use the Angular framework to create a
component-driven application, and perhaps along the way, create some reusable components
for other applications.

Note: The code samples in this book are available for download here.

https://github.com/SyncfusionSuccinctlyE-Books/Angular-Succinctly

 22

Chapter 2 Dev Environment

To work with Angular and start developing your own component-driven websites, you will need
to make some decisions and create an environment for building, compiling, and running your
application. In this chapter, we will set that environment up and get ready to build our first
application.

Language

Angular lets us build client applications in HTML and CSS, and either JavaScript or a script
language that compiles to JavaScript. We are going to use TypeScript rather than JavaScript
for working with Angular. Don’t worry if you are not familiar with TypeScript; if you have used
JavaScript and object-oriented programming before, you should be able to pick up TypeScript
very quickly.

Note: You can download the ebook TypeScript Succinctly by Steve Fenton from
the Syncfusion website.

You can use JavaScript for Angular; however, Angular itself is written in TypeScript, and most
examples will use the TypeScript language. Since TypeScript is “strongly-typed JavaScript” (and
more), any editor that supports TypeScript will be able to use IntelliSense features to make your
development work much easier.

Editor

You can use any editor you would like to develop Angular applications, but your programming
work will be much easier if you choose an editor that supports TypeScript. For the purposes of
this book, we are going to use Microsoft’s Visual Studio Code. You can download Visual Studio
Code here (it’s free).

If you are not familiar with Visual Studio Code, it is an editor and development tool that operates
similarly to Visual Studio, but is more geared toward managing files and folders than solutions
and projects. An Angular application works in folders and files, so Visual Studio Code can work
very well with Angular applications.

Note: You can download the book Visual Studio Code Succinctly by Alessandro
Del Sole from the Syncfusion website.

https://www.syncfusion.com/resources/techportal/details/ebooks/typescript
https://code.visualstudio.com/Download
https://www.syncfusion.com/resources/techportal/details/ebooks/Visual_Studio_Code_Succinctly

 23

Node Package Manager (NPM)

Angular is a JavaScript framework that will add thousands of files and folders (supporting
libraries) into your application folder. The best way to manage these files and folders is to let
another application do it for you. The Node Package Manager is that program. It is a
prerequisite to using Angular for development.

Installing NPM

To install the package manager, visit the Node.js downloads page.

You will see the following page (although its appearance may change over time).

Figure 3: NPM Install Page

Download and install the version that is right for your machine.

NPM is a console-based program that we will use to install the Angular framework, as well as
other useful features. Visual Studio Code allows you run a command window (use the View >
Integrated Terminal menu) from within Visual Code, or you can open your own console
window and run the necessary commands from there.

https://nodejs.org/en/download/

 24

You can always update to the most current version of NPM by using the following command at a
command prompt window.

npm install npm@latest -g

This will install the most current version for use globally on your computer.

Note: There is much more to Node and NPM than what we need for Angular.
JavaScript packages can be managed using NPM, and at the time of this writing,
there are over 300,000 packages accessible through NPM. Be sure to visit the
NPM website if you want to learn more.

Confirming NPM

Open a console window and confirm that NPM was installed properly. You can do this by
checking the version, as shown in Figure 4 (your version may be different).

Figure 4: NPM Version

Installing packages

When we create our Angular application folders, one of the files will be a JSON configuration file
that NPM will use to manage our package dependencies. Here is a sample:

1. "dependencies": {

2. "@angular/common": "~7.0.0",

3. "@angular/compiler": "~7.0.0",

4. "@angular/core": "~7.0.0",

5. "@angular/forms": "~7.0.0",

6. "@angular/http": "~7.0.0",

7. "@angular/platform-browser": "~7.0.0",

8. "@angular/platform-browser-dynamic": "~7.0.0",

9. "@angular/router": "~7.0.0",

10. "core-js": "~2.5.4",

https://www.npmjs.com/

 25

We will cover this more in the next chapter. One key point is that the version number is specified
for the dependencies, allowing you to keep your production environment safely at one version,
while possibly exploring new features in a later version.

Summary

Now that your development environment is built, you are ready to put together your first Angular
application.

 26

Chapter 3 Angular CLI

Angular CLI (command-line interface) is a new tool that was developed to make it easier to
create and deploy Angular applications. Much of the setup and configuration work you need to
do can be done through the Angular CLI. Deploying applications is much simpler when you’re
using the CLI tool.

Getting Angular CLI

To use Angular CLI, you need to have the latest versions of Node and NPM. You can check the
versions at the command line with the following lines:

• npm –-version
• node -v

NPM must be version 3 or higher, and Node must be version 4 or higher. If you don’t have these
versions, you can update NPM using NPM itself. The command is:

Code Listing 11

npm install npm@latest -g

If you need to make an update, the easiest and safest approach is to visit the Node.js website
and download the latest version. Once you have these versions, simply run the following
command from a command prompt to install Angular CLI.

Code Listing 12

npm install -g @angular/cli

This will install angular-cli, and you can use the ng command to run it.

Code Listing 13

ng help

This will provide a list of all the commands and their parameters. For this chapter, we are
focusing on the new and build commands.

https://cli.angular.io/
https://nodejs.org/en/download/

 27

Note: If you want to update Angular CLI to the latest version, you need to
uninstall the current version and get the latest version, as shown in the following
code.

npm uninstall -g angular-cli
npm cache clean
npm install -g @angular/cli@latest

Creating a new project

Once you’ve installed Angular CLI, you can create a new project using the new command. Its

syntax is:

Code Listing 14

ng new <projectName>

You will be prompted to add Angular routing (default of N) and to select which style-sheet format

should be generated (CSS, SCSS, SASS, LESS, etc.). Choose your style sheet preference for
the styles created by the new command.

The command will create a folder with the project name and place the needed files into the
folder. The package.json file will be generated automatically for you, with the latest version of
the Angular modules. The installation process will be performed as part of the creation, so the
node_modules folder will be populated for you.

Once this step is complete, you have a working application, including the needed configuration
files. The application itself will reside with the src folder, with the familiar app folder within it.

Project root

The project root folder will hold several configuration files: the package.json file (we will cover
this in the next chapter), a configuration file for Angular (angular.json), and a file for the lint
checker (tslint.json). You’ll also find a GitHub readme file (README.md). This is a Markdown-
syntax file with basic instructions to run and test the application.

Note: A new file is generated, called package-lock.json. The package.json file
allows you to specify a minimum version for dependent modules, so your code
should work with later versions as well. Package-lock provides exact versions, so
if you build your application with package-lock, you will produce the exact same
application each time, while package.json may get built with later versions of
some dependencies.

 28

src

In the src folder, you’ll find the index.html file and an empty style sheet file, as well as some
other files for testing, a favicon file, and more. Two configuration files for TypeScript
(tsconfig.app.json and tsconfig.spec.json) will be here as well.

There is a folder within src called environments. This folder contains a pair of TypeScript
components that export a production flag, so you can do debug and production builds. During
development builds, environments.ts is loaded. When you do a production build, the
environments.prod.ts file is loaded instead.

src\app

Within the src\app folder, you’ll find the base module and component. You will likely adjust
app.module.ts and app.component.ts to be your application starting points. The base files are
simply an Angular version of Hello World.

 Tip: The generated folders will contain spec files (app.component.spec.ts and
others). These files are used for unit testing. You can add the –skip-tests option
to the new command if you don't want to generate these files.

ng serve

You can run the ng serve command to start a web server on local host, port 4200. If you run ng
serve and open a browser to http://localhost:4200, you will see the basic application display the

message “Welcome to my-app!”

Figure 5: Angular CLI Hello World

http://localhost:4200/

 29

Tip: The scripts and styles are bundled and can be found in the dist folder.

ng build

The ng build command is used to create a set of distribution files in the output folder (usually

dist). You can do a dev build (the default) by simply running the following command.

Code Listing 15

ng build

The dist folder will contain the bundles and any required assets for running the application. To
do a production build (which will result in substantially smaller bundle files), you can use the
following command.

Code Listing 16

ng build --prod

Environments folder

The environments folder contains Angular modules that can be loaded, depending on the type
of build.

Code Listing 17: Environment.prod.ts

export const environment = {

 production: true };

You can import this file into your component with the following code.

Code Listing 18

import { environment } from '../environments/environment';

This will give you access to the properties in the environment files, which will allow you to adjust
your code if need be, based on whether it is a development or production build.

 30

Summary

Angular CLI is a very helpful application to use in your Angular development. We touched upon
some of the basics, but the CLI is powerful and worth exploring more. It includes support for unit
tests, and it can generate starting components of any Angular type.

You should periodically visit the official Angular CLI website to see the growth and
enhancements the tools provide. It is not necessary to use the Angular CLI, but as you get
familiar with Angular, you will come to appreciate how the CLI makes your overall Angular
development work easier.

https://cli.angular.io/

 31

Chapter 4 Files and Folders

When you set up an Angular application using Angular CLI, it populates a folder for your
development work. This folder includes node_modules (libraries your application might need),
the source code to your application, and some testing tools. In this chapter, we explore these
folders and files.

Folder structure

After project creation, Angular applications will have a root folder (for configuration files) and
several other common folders:

• src: The main folder for your application’s source code.
• node_modules: The folder where libraries are stored.
• e2e: The end-to-end testing folder.

Here is a look at the structure within Visual Studio Code.

Figure 6: Folder Structure

GitHub files

The default application contains a couple files needed by Git and GitHub. These are the
.gitignore and README.md files. If you are interested in learning more about GitHub, you can
download my book GitHub Succinctly from the Syncfusion website.

https://www.syncfusion.com/resources/techportal/details/ebooks/GitHub_Succinctly

 32

.gitignore

The .gitignore file is the standard file instructing GitHub and Git which files in a folder should be
excluded (or ignored) from Git version control. You can specify files or folders not to check into
the repository, such as:

• /dist: Ignore files in the distribution folder.
• /tmp: Ignore files in the tmp folder.
• /node_modules: Don’t commit the various Angular or other libraries.

Lines beginning with # are comment lines.

README.md

GitHub projects contain a README.md file that is displayed as part of the GitHub listing. The
Angular CLI will include a readme file for you when creating a new project.

Figure 7: Sample GitHub Readme

If you are not using GitHub, you can ignore these files, but having them generated for you is a
nice time-saver.

.editorconfig

This file allows you to provide configuration settings for your editor. You can set various
properties, such as indent_style (tab or space) and indent_size (number). Visual Studio

Code doesn’t natively support .editorconfig, but you can install a plugin that supports it by
pressing Ctrl+Shift+P and entering the following command.

 33

Code Listing 19

ext install .EditorConfig

Tip: If you try to create a file beginning with a period, Windows will view it as a file
extension and ask for a file name. However, if you put a period at the end as well,
Windows will create the file.

angular.json

This file allows you to configure the behavior of the Angular CLI tool. There are various
properties, such as version, $schema, etc. The primary section is the projects section, which
allows you to customize most aspects of your Angular developments and tools.

Settings

The following settings will appear in the root JSON element:

• $schema: Reference to the schema definition of the angular.json file.
• version: Current version number (1) of the schema.
• newProjectRoot: Location where CLI-generated applications and libraries are

saved (defaults to a folder called projects).

projects section

This section will contain the defaults of your project and tools used by the CLI. Each project
within this collection can have the following properties.

Table 1: Projects Section Properties

Property Description

root Main directory for all project files. Usually an empty string.

sourceRoot Directory where the source files are. Usually src.

projectType Application or library, depending on project.

prefix Custom prefix applied to code generated by Angular CLI.

architect section

This section allows you to customize the options for building the application, running tests,
serving the application, etc. Within this section, you will find child sections for build, serve,
extract-i18n (internationalization feature), test, and lint. Within each section are the various
options necessary for the particular command.

 34

build section

This section provides the actual name of the builder (@angular-devkit/build-angular:browser)
that is invoked by the ng build command. You can customize this by specifying a different

NPM package to create the target build.

options section

The options section sets the various options, such as the output path, the main component,

the location of the ts.config file, etc. There are three sections within options as well: assets

(images, JSON files, etc. needed by the application), styles (comma-delimited list of style

sheets), and scripts (comma-delimited list of script files). You can add style sheets and scripts

you want included in the application in this section.

serve section

The serve section allows you to override settings in the build section for when you want to run

the application. For example, the generated serve section provides a browser target, so the
builder knows to serve the application on local host.

While the defaults provided in the generated angular.json file allow you to build and run your
Angular application, the configuration file allows you tremendous amounts of control over the
processes. You can find out more about the new angular.json configuration file on the Angular
website here.

package.json

This file tells NPM which dependencies are needed for your application. While you might not
need them all, there is no harm in adding more packages than you use. Your client application
will only get the packages you actually use in your code, not the entire list from this file. Since
this is a JSON file, the elements described here will be between braces { } in the actual file.

Package information

This section contains information about the package, such as its name and version.

Code Listing 20

 "name": "helloworld",
 "version": "1.0.0",
 "description": "First Angular application",
 "author":"Joe Booth",

The name attribute is required and must be lowercase. The version, description, and author

attributes are optional, but should be provided in case another developer wants to find
information about your application.

https://angular.io/guide/workspace-config

 35

Scripts

The scripts section is used to provide commands to the NPM command-line application.

Code Listing 21

"scripts": {
 "start": "ng serve",
 "lint": "ng lint",
 "test": "ng test",
 "e2e": "ng e2e"
 },

When you run the NPM start command to launch your application, you are actually running

the Angular serve command, which trans-compiles the TypeScript files and opens the server

on the local host. You can add additional scripts to compress your JavaScript files, for example.

License

The purpose of the package.json file is to provide information about your application, and if the
package is open source, you can specify the license on the package, such as MIT. You can also
set the license to UNLICENSED and add the private attribute (set to true). However, once

you’ve completed your package, you can publish it to the Node repository for others if you would
like. For now, we will keep our project private with the following attributes.

Code Listing 22

 "license": "UNLICENSED",
 "private":true,

Note: There are a number of additional attributes available for describing the
package and adding keywords to make it available as open source to other
developers. If you decide to make your package available to the public, explore
attributes like repository (location where source is), keywords (to make
searching for it easier), and bugs (email address used to report any bugs).

Dependencies

The dependencies section lists all the modules that your package relies on, and will be

automatically added when someone installs your package. The list of dependencies you might
need for an Angular application is shown in the following code listing.

Code Listing 23

"dependencies": {
 "@angular/common": "~7.0.0", // Common service, pipes, directives
 "@angular/compiler": "~7.0.0", // Template compiler

 36

 "@angular/core": "~7.0.0", // Critical runtime parts
 "@angular/forms": "~7.0.0",
 "@angular/http": "~7.0.0", // Angular HTTP client
 "@angular/platform-browser": "~7.0.0",
 "@angular/platform-browser-dynamic": "~7.0.0",
 "@angular/router": "~7.0.0", // Component router

 "core-js": "^2.5.4",
 "rxjs": "~6.3.3",
 "zone.js": "~0.8.26"
 },

When we run the install command, these dependencies will be added to your application

folder from the Node repository. You can use the list in Code Listing 23 as a good starting point,
but you might start adjusting this as you work more with Angular applications. Comments are
actually not supported in a JSON file; the comments in this example are just for indicating what
the various modules are for. The configuration files available in the Succinctly series GitHub
repo do not have comments.

Note: At the time of this writing, Angular is on version 7.0.3. You might need to
update your dependencies as future versions of Angular are released.

devDependencies

This section lists the dependencies that are only needed for development and testing your
application. When doing a production release, these dependencies will not be added.

Code Listing 24

 "devDependencies":
 {
 "@angular-devkit/build-angular": "~0.10.0",
 "@angular/cli": "~7.0.3",
 "@angular/compiler-cli": "~7.0.0",
 "@angular/language-service": "~7.0.0",
 "@types/node": "~8.9.4",
 "@types/jasmine": "~2.8.8",
 "@types/jasminewd2": "~2.0.3",
 "codelyzer": "~4.5.0",
 "jasmine-core": "~2.99.1",
 "jasmine-spec-reporter": "~4.2.1",
 "karma": "~3.0.0",
 "karma-chrome-launcher": "~2.2.0",
 "karma-coverage-istanbul-reporter": "~2.0.1",
 "karma-jasmine": "~1.1.2",
 "karma-jasmine-html-reporter": "^0.2.2",

https://github.com/SyncfusionSuccinctlyE-Books/Angular-Succinctly
https://github.com/SyncfusionSuccinctlyE-Books/Angular-Succinctly

 37

 "protractor": "~5.4.0",
 "ts-node": "~7.0.0",
 "tslint": "~5.11.0",

 "typescript": "~3.1.1"
 }

The package.json file interacts with NPM to install dependencies. Your version numbers might
be different from the examples in Code Listing 24, but by keeping this configuration file with the
project, you can ensure current production projects stay stable on the same versions, while
possibly exploring updated versions for later applications.

tsLint.json

This configuration file lets you set up the options for the codelyzer lint checker. A lint checker is
a nice tool (installed as part of Angular CLI), but sometimes your coding style could cause
unnecessary warnings. These warnings can clutter your lint checking, and make it hard to see
the important warnings. By customizing the file, you can adapt the lint checker to work with your
coding style.

For example, the any type in TypeScript is allowed, but somewhat defeats the purpose of a

strongly typed language. You can control whether to report usage of any with the following entry

in the configuration file.

Code Listing 25

"no-any": true

Tip: Lint checkers are handy tools for reducing the likelihood of certain errors that
will compile, but they may cause problems at runtime. Every rule checked
generally has a good reason for it, so be sure to decide whether the rule is actually
a nuisance or if you should rethink your coding style.

src folder

The src folder contains the configuration file for the TypeScript compiler and the type
specifications.

tsConfig.json

The tsConfig.json file contains the compiler options for TypeScript. It allows us to specify how
we want the .ts files to be transpiled into JavaScript files. The options we use for our default are
shown in the following code listing.

 38

Code Listing 26

{
 "compileOnSave": false,
 "compilerOptions": {
 "baseUrl": "./",
 "target": "es5",
 "module": "es2015",
 "moduleResolution": "node",
 "sourceMap": true,
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "removeComments": false,
 "noImplicitAny": false
 }
}

You do not have to have a tsConfig.json file, but it is included to get the exact behavior we
want, including when we want ES5 (ECMAScript 5) rather than the default ECMAScript 3.
We’ve also chosen to keep comments in the trans-compiled JavaScript code. You can read
Steve Fenton’s book on TypeScript if you want more details on the compiler options.

Summary

There are many configuration files with the project, which provide a great deal of flexibility in
how you develop your Angular applications. The most common ones you’ll need in development
are the package.json (to get libraries and new versions) and angular-cli.json (for controlling
the code generation and execution in the application) files.

https://www.syncfusion.com/resources/techportal/details/ebooks/typescript

 39

Chapter 5 Customization

You can edit the configuration files to customize many aspects of your development
environment. In this chapter, we are going to cover how to customize your application by
integrating some third-party libraries you might want to use. Keep in mind that we want to use
libraries written for Angular, rather than JavaScript libraries. JavaScript libraries manipulate the
DOM, which is a behavior we do not want in an Angular application.

Adding libraries

While the ng new command will generate a package.json file for you, it does not know about

the various libraries you might need in your application. For example, if we want to add
Bootstrap and Font Awesome to our application (two popular libraries), we would need to first
install them using NPM.

Code Listing 27

npm install --save @ng-bootstrap/ng-bootstrap // Angular Bootstrap

npm install --save bootstrap // Original bootstrap CSS

npm install --save font-awesome angular-font-awesome // Font-awesome

After running these commands, you will see the library files in your node_modules folder. This
example shows how to install the Angular version of Bootstrap. You can also run just the
installation of Bootstrap, which will add the original Bootstrap and allow you to use the CSS
formatting. If you are comfortable with Bootstrap's CSS structure, you can use it in Angular
template files. However, you should not add the Bootstrap JavaScript portion to the application.

angular.json

The configuration file angular.json (see Chapter 4) can be found in the root folder, and
contains various configuration options for running the Angular CLI. Within the project section,

you will find a few options that are useful to know:

• root: The folder of the actual application. Usually src.
• outDir: The folder where distribution files should be written. Usually dist.
• assets: An array of additional files that should be included in the distribution.
• styles: An array of style sheets that should be included.

o We can add the Bootstrap styles sheet here, using
node_modules/bootstrap/dist/css/bootstrap.css.

Once these additions are made, Bootstrap styles and components will be bundled and included
in your application when you run it and when you build the distribution. You can visit this website
for the Angular version of Bootstrap.

https://ng-bootstrap.github.io/#/home

 40

Font Awesome

Adding Font Awesome follows basically the same process as adding Bootstrap CSS. We just
add the CSS file to the styles array.

Code Listing 28

styles: ["node_modules/font-awesome/css/font-awesome.css"]

If you are used to the original font-awesome syntax, you can still use the classes:

<i class="fa fa-gears fa-2x"> </i>

You can also import the Font Awesome module by using the import statement in your

app.module.ts file:

import { AngularFontAwesomeModule } from 'angular-font-awesome';

Tip: Don’t forget to add the Font Awesome module to your imports array in the
app.module file.

This will allow you to use the <fa> tag and attributes, as the following example shows:

<fa name="cog" animation="spin" size="2x"></fa>

You can visit this website to learn more about the Angular version of Font Awesome.

Either approach can be used, and you can combine approaches, although I'd recommend you
chose the approach you find more readable, and stick with it.

Assets

The assets collection contains various elements (files and folders) that you want copied to the

distribution folder when the application is built. For the default build:

Code Listing 29

assets: ["assets","favicon.ico"]

This tells the build process to copy the contents of the assets folder and the favicon.ico file to
the distribution folder (typically dist).

https://www.npmjs.com/package/angular-font-awesome

 41

Environments

The environments folder contains TypeScript files that will be loaded depending on the
environment the build is being made for. For example, the environment.prod.ts file located in
the \src\environments subdirectory contains the following code.

Code Listing 30

export const environment = {

 production: true;

}

You can import the environment module into your application and query the production

property in case your application needs to behave differently, depending on the environment.

Summary

Although you can manually add style sheets to your HTML templates, by using the
angular.json file, you gain the benefits of bundling to reduce page load times. You can also use
the assets to move additional content to the distribution. Finally, the environments folder lets
you provide properties your application can use to distinguish whether it is running in
development or production.

 42

Chapter 6 Your Environment

As we saw in Chapter 4, Angular CLI creates a default structure for your project. The src\app
folder holds all the TypeScript source files, and the TypeScript compiler configuration file. You
will also note that the default installation places the template HTML and CSS files in the same
folder. This is okay for small projects, but you are not limited to that approach.

Your folder structure

Within the app folder, you can structure your folders any way you’d like. I use an approach
somewhat like Microsoft MVC applications:

• Classes: Class libraries
• Interfaces: Interface modules
• Services: Service layers
• Views: HTML template code

If you use a different structure, you will need to adapt some of your path references to your
structure. If you have multiple Angular applications, I would recommend using the same folder
system for each application.

Another approach might be to put files related to application functionality in the same folder,
such as:

• Payroll: Payroll/employee information
• Ordering: Customers and orders
• Inventory: Inventory and work in process

Summary

Decide what overall structure works best for you, and stay with it—especially in a team
environment where multiple people might be working on the application.

 43

Chapter 7 Exploring Hello World

In this chapter, we are going to look into the default files created by Angular CLI to see how their
version of Hello World works.

Start Angular CLI

Let’s begin by creating an application using the Angular CLI tool.

Code Listing 31

ng new HelloWorld

Once the application has been created, open the src\app folder, and let’s look at the default
component (app.component.ts). The component will be very simple, but it will get us started. It
should have the following (or similar) code, depending on Angular updates.

Code Listing 32

import { Component } from '@angular/core';
 @Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']

 })
export class AppComponent {
 title = 'HelloWorld';
 }

Every Angular application needs at least one root component, and by convention, it is named
AppComponent. This component is responsible for populating a portion of the screen. (If you

remember the Shadow DOM and template tag from the introduction chapter, this will make

sense as to what exactly Angular is doing.)

Although simple, this code illustrates a basic component inside Angular. Let’s take a look.

Import statement

The import statement is used to reference the modules we need (similar to the using

statement in a C# program). For our simple program, we only need the Component module

found in the angular/core library. For actual applications, you will likely have more than one
import statement.

 44

Tip: When entering an import statement, enter the file name first, so IntelliSense
can show you the component names it finds in the file.

@Component statement

The @Component statement is a function that takes an array of metadata and associates it with

the component we are defining. For this component, we specify the CSS selector and the
template we want to use. When the component is instantiated, the tasks should be familiar.:

• Create a Shadow Root from the selector (Shadow Host).
• Load the selected template into the Shadow Root.

Export statement

The final line of code, the export statement, tells the name of the component that this module

will make available to others. The code between the braces {} is where we can store properties

and methods of the component class, although we will not need any class details yet for the
simple HelloWorld component.

This export statement allows other components and modules to import it, which we will see in

our next module.

Modules

The App.module.ts file is the root module that describes how the application elements work
together. Every application will have at least one Angular module. The root module for our Hello
World application is shown here.

Code Listing 33

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [AppComponent],

 imports: [BrowserModule, AppRoutingModule],

 providers: [],

 bootstrap: [AppComponent]

 45

})

export class AppModule { }

Like our component, we import the components from Angular (NgModule, BrowserModule), as

well as our application and routing components (AppComponent,AppRoutingModule).

Note: The default module contains the imports from the Angular library that most
applications are likely to need. Your applications might not need these modules,
but they are just as likely to need additional modules to be imported.

The @NgModule decorator takes some metadata about how to compile and run the application.

Declarations array

This array contains the components our application might need. In this case, only the app
component we created earlier is needed. In other applications, you are likely to have multiple
components specified in the array.

Imports array

The imports array lists all modules that the application will need. Every application that runs in

a browser will require the BrowserModule. The default module also imports the Forms and Http

modules.

Bootstrap array

The bootstrap array contains the name of the component that Angular will create and insert

into the index.html host webpage. In this case, it is also our app component.

Our main program

Now that we’ve seen the module and component, we need another program to start the
environment—a process known as bootstrapping—to load our component. In our src folder (not
the app folder), there is a file called main.ts.

Code Listing 34

import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-
dynamic';

import { environment } from './environments/environment';

import { AppModule } from './app/app.module';

 46

if (environment.production) {

 enableProdMode();

}

platformBrowserDynamic().bootstrapModule(AppModule)

 .catch(err => console.error(err));

The first four lines allow us to load components. The platform browser module allows us to run
the application within a browser. However, Angular applications might run on other platforms, so
this approach allows the same code to be a bootstrap for the browser, or possibly another
platform.

The next statement checks to see whether we are running in production or development mode.
Since we are importing the environment module, we can access the production flag and add

some additional code if we want (in this example, the enableProdMode() function). If ProdMode

is enabled, some development mode features (such as assertion checking) are turned off.

The last line of code calls the bootstrapModule method and passes it our module. We could

have made a single file to do the component and bootstrapping, but remember that we do not
want to write tightly coupled code. Displaying the view (AppComponent.ts) and bootstrapping
the application (main.ts) are two distinct tasks, so having them in separate components is a
nice example of loosely coupled component design.

Index.html

The final piece we need is to create the index.html file, which should be very familiar to web
developers. Index.html is your starting point, and contains very common statements. You’ll
declare the <html>, the title, and some meta tags, as shown in Code Listing 35.

Code Listing 35

<!doctype html>

<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Hello World</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">

 </head>

...

You can add any tags or other header elements as part of your HTML.

 47

Style sheets

If you want any style sheets, you can load them here as well. Remember that these style sheets
will only affect the main DOM and not the components, which live in their own encapsulated
world.

Code Listing 36

<link rel="stylesheet" href="styles.css">
...

Although you can add style sheets directly in the index file, I would recommend adding them to
angular.json and letting them get bundled together as part of the Angular build process.

Body

We can now specify our body content, which for this application is simply going to create a
placeholder for the component to be written.

Code Listing 37

 <body>

 <app-root></app-root>

 </body>

</html>

You can add placeholder text in the app-root section that will appear on the website while the
initialization process is completed. If you’ve added Font Awesome to your project, you can
display a spinner icon during the load process, as shown in Code Listing 38.

Code Listing 38

 <app-root><i class='fa fa-spinner fa-spin'></i>Loading...</app-root>

Styles.css

You will also find a style sheet (styles.css) that will reside in the same project folder as the
index.html file. The default one is empty, but you can add any style rules you want applied to
your application.

Code Listing 39

h1 {

 color: #369;

 48

 font-family: Arial, Helvetica, sans-serif;

 font-size: 250%;

}

body {

 margin: 2em;

 background-color: lightgrey;

}

Finally, let’s see what this looks like.

Open a command window, change to the application directory, and enter the following.

Code Listing 40

npm start

You will see a lot of compilation messages scroll by, and eventually you’ll see a message
indicating Compiled successfully. When this message appears, open a browser and navigate
to http://localhost:4200. If all goes well, you will see our very impressive Hello World application
running in the browser window.

Figure 8: Hello World

Note: The default HTML template code (found in app.component.html) contains the
Angular logo and helpful links. For simplicity, I removed that code so the HTML
template would only show the title element from the component.

Summary

It might seem like a lot of files and work for a simple Hello World application, but fortunately,
Angular CLI does most of the work for you. We now have a component-based application
running in the browser. While it might not sound like much, as we explore Angular in more
detail, you should come to appreciate how powerful components are in the world of front-end
development.

http://localhost:4200/

 49

Chapter 8 Tweaking It a Bit

Now that Hello World is running, we want to look at a feature that NPM scripts provide to make
development easier.

ng serve

ng serve is the Angular CLI web server that runs locally (localhost) in your browser. When you

run npm start (the script that runs ng serve), you’ll see information about the build processor,

and hopefully an indication that the build is now valid.

Figure 9: Start Up

Tip: The --open (or shortcut --o) option on the ng serve command opens your
default browser to show your application.

The ng serve command is also looking at the folder and detecting changes. If you keep the

browser open and change your source files, you’ll see that the program detects the change,
recompiles the code, and refreshes the browser on the fly.

Figure 10: Detecting Changes

This watching for changes and incrementally compiling them makes it easier to make code
updates and immediately see the impact of the change. It will show you which file was changed,
and then update your browser with the changes—a nice feature during your development cycle.

Summary

Once your application is started, the tools provided give you a nice environment to explore and
see what is happening behind the scenes.

 50

Chapter 9 Components

Now that the environment is up and running and we’ve seen some of the tools we can use, it is
time to dig into the actual features and language syntax of Angular. We will start with the most
basic element: the component.

The component is an encapsulated piece of code that is generally responsible for handling a
piece of the user’s screen. We define our base page with a collection of CSS selectable
elements and then ask Angular to call the proper component to populate the selected element.
As the user navigates through our site, Angular creates the components necessary to populate
the page elements.

Component files

Each component should reside in its own .ts file. This file will typically contain three sections: the
import section, which specifies the other components we want to use (import) in our component;
the metadata section, which provides details about the component to Angular; and finally, the
actual component code itself.

import

The basic syntax is:

Code Listing 41

import { Component_name } from 'module location'

At minimum, you will need to import Component from the Angular core. This is necessary to

provide metadata about the component to Angular.

Tip: When adding the import to your code, specify the from name first; this will
allow Visual Studio Code to use IntelliSense to validate the component name
automatically.

Code Listing 42

import { Component } from '@angular/core';

There are many components available in the Angular libraries. Some of the possible component
classes you are likely to need are:

• Http in @angular/http: Basic HTTP operations like GET, POST, etc.

 51

• Router in @angular/router: Maps URLs to components.
• Location in @angular/common: Allows interaction with the browser’s URL.

As you start working with Angular, you will explore the various libraries available both in the
base libraries provided by Angular and possibly third-party libraries that provide components to
help your front-end web development work.

Metadata

The metadata is a set of properties that describe the component to Angular. There several
options available, but the most commonly used are the selector property and the template

property. For components, the selector and a template method are both required.

selector

The selector value is a string that refers to the element on the page where the component

should render its content. The selector typically is an element name, such as <main-app>.

Other options include:

• Class: <div class="main-app"> </div> Selector: .main-app

• Attribute: <div data-name="main-app"> </div> Selector: [data-name]

template

The template is the HTML code that will be inserted into the selected element when the
component is rendered. The template can be simply HTML code, but it is much more powerful
than that. For example, any values enclosed in double braces {{ }} will get replaced with a
value from the component class. Consider the following template code.

Code Listing 43

<h1>Company: {{CompanyName}} </h1>

This code would have the {{CompanyName}} replaced with the value of the CompanyName

property in the component’s class code. This process is referred to as interpolation, and is just
the tip of the iceberg of template capabilities.

In the next chapter, we will explore the template capabilities in more detail.

templateUrl

If the template code is too large, or you just want to separate the HTML view from the
component, you can use the templateUrl instead of the template, and provide a file location

where the template content can be found.

 52

Note: You can only have one or the other: template or templateUrl.

styles

The styles attribute allows you to define styles for elements within the template. The element

is a collection of styles (delimited by brackets []). Within the collection, you can add classes and
styles to be used by your component. For example, the following styles will set the <p> tags

within your component to an antique white background, and the <h1> tags to a navy blue text

color.

Code Listing 44

[`

 p: { background-color: antiquewhite; }

 h1: { color: navy; }

`]

Notice the use of the backtick (`) character to create multiline styles.

styleUrls

Similar to the templateUrl property, the styleUrls property can be used to specify the styles

via a style sheet (or collection of style sheets). The following syntax shows a sample property
value that will load both the style.css and customer.css files.

Code Listing 45

styleUrls: ['app/styles.css','app/customer/css']

In this case, the style sheets are found in the app folder. The URL is relative to the application
root (typically where the index.html file resides).

encapsulation

The encapsulation attribute is a feature that allows Angular to work with old browsers (those

that don’t support the Shadow DOM). There are four possible values in the enumeration:

• Emulated
• Native
• None

The default value, Emulated, creates a surrogate ID for the host selector and pre-processes the

styles to include this ID. This allows older browsers to have CSS unique to the component.

 53

Native (for new browsers) takes advantage of the Shadow DOM and creates a Shadow Root

for the component. This is the preferred approach to keep your component styles isolated if you
know your target browsers are new, and you don’t need to support older browsers.

None doesn’t do anything, but leaves the styles as they are in the DOM.

To include the enumeration, you need to import the ViewEncapsulation enum values from the

angular/core library, as shown in Code Listing 46.

Code Listing 46

import { ViewEncapsulation } from '@angular/core';

These are the basic component properties you need to get started, but there are few more that
we will cover in later chapters.

Class code

The actual code that makes up the component is the final piece of the component. We use the
export class statement to define the name of the class and its content. Here is an example

class in the AppComponent.

Code Listing 47

import { Component } from '@angular/core';

@Component({

 selector: 'main-app',

 template: `<h1>{{ClubTitle}}</h1>

 <h2>{{LeagueTitle}} </h2> `

})

export class AppComponent {

 // Properties

 ClubTitle: string

 LeagueTitle: string;

 // Constructor

 public constructor() {

 this.ClubTitle ="The 422 Sportsplex";

 this.LeagueTitle="Adult Over 30 Leagues";

 }

 // Class methods

 public ChangeLeagues(newLeague: string) {

 54

 this.LeagueTitle = newLeague;

 }

}

The properties are TypeScript variables that we plan to use in the class. In this example, we are
simply defining two strings to hold the club and league titles. The constructor is the code that
gets invoked when the component is first instantiated. You can only have one constructor in
your component.

You can also create class methods, such as the ChangeLeagues() method. This method simply

changes the LeagueTitle property, which will then be updated in the template display.

The component class code is based on TypeScript classes, and allows you to create properties
and define their scope, as well as create class methods. By default, all properties and methods
in the class are considered public.

Tip: In my opinion, explicitly using the public keyword is good programming style.

Properties

To define properties within the class, you just need to declare the variable, and optionally,
provide it with a data type. The basic syntax is:

Code Listing 48

[public | private | protected]

 Property Name: data Type

[= initial Value]

By default, the property is public, meaning its value can be seen outside the class. Private

means the variable is only used within the class, and it will not be defined if you try to access it
externally. Protected means it acts like private, except that derived classes can use the

property as well.

Property Name follows general rules for defining a variable: it can contain alphanumeric values

and an underscore character, but it cannot begin with a number.

data Type indicates the kind of data you expect to put in a property. It is technically optional,

since TypeScript can infer data type by its usage, but it is a good habit to specify the type. Valid
data types include:

• number
• string
• boolean

 55

You can also assign an initial value as part of the declaration by adding an equal sign and the
initial value that matches the property’s data type. You can declare the initial value by
referencing another property with the class (including ones defined later in the class). To
reference a class property, you will need to qualify the variable name with the this prefix.

You can also use null and undefined for initial values when declaring properties. These

behave the same way they do in JavaScript.

Here are some example property definitions, showing the various features you can use when
creating properties in the class code.

Code Listing 49

 protected _PriorOwner: string = "YSC Sports";

 private LastClub: string = this._PriorOwner;

 private CallCtr: number =0;

 private IsAdmin: boolean = false;

 ClubTitle: string = this._PriorOwner;

 LeagueTitle: string;

 private _CurrentOwner: string;

You can initialize the properties inline or later in a class method, such as the constructor.

Accessors

Sometimes, providing direct access to a property can be risky, so you might want to control the
access to the variable through program code. This is done by creating accessor functions that
act just like properties, but call a function to get or set the property values behind the scenes.

To create an accessor function, you need to declare the keyword get or set, a function name,

and a data type. The syntax is shown in Code Listing 50.

Code Listing 50

get| set function_name() : Data Type

Get accessor

The get function is used to return the value of the “property.” It could simply be a private field in

the class, or a more complex business rule. For example, if we want our ClubOwner property to

return the current owner of the club, the function would look like this:

 56

Code Listing 51

 get ClubOwner() : string
 {
 return this._CurrentOwner;
 }

In this example, the private function ClubOwner simply returns the value of the private variable

_CurrentOwner.

Set accessor

The set accessor function is used to update the property, and can be omitted to create a read-

only property. You can add business logic to accept or deny the update, or you might need to do
additional work when the property is updated.

Here is an example of a set function that does two tasks. First, it confirms that you have admin

permission to make the update, and second, it puts the original owner value into the
_PriorOwner private variable.

Code Listing 52

 set ClubOwner(newOwner: string) {

 // Check permissions

 if (this.IsAdmin) {

 this._PriorOwner = this._CurrentOwner;

 this._CurrentOwner = newOwner;

 }

 }

Assuming you’ve retrieved the IsAdmin flag from some database call, you could easily control

who has access to various properties in the class.

Constructors

The constructor is a public method (it cannot be private or protected) that is called whenever

the class is instantiated. If you don’t specify a constructor method, a default constructor is used.
A class can only have one constructor.

The syntax is just like any void TypeScript function, and uses the name constructor. It is often

used to initialize variables, or perhaps make a database call to set various properties of the object.

Code Listing 53

 // Constructor

 57

 public constructor() {

 this.ClubTitle ="The 422 Sportsplex";

 this.LeagueTitle="Adult Over 30 Leagues";

 this.SeasonStart = new Date();

 };

Class methods

A class method is a TypeScript function, and can be public, private, or protected, just like the

properties. The syntax for declaring the method is:

Code Listing 54

[public | private | protected]

 Method Name (optional parameters)

 : optional return type

{ body of method

}

public is the default, and if no return type is specified, it will be undefined. In our example, the

following method could be used to change the current league being displayed.

Code Listing 55

 // Class methods

 public ChangeLeagues(newLeague: string) {

 this.LeagueTitle = newLeague;

 // Retrieve league details

 }

Remember that any class properties need to use the this qualifier. You can create variables

internally in the method, scoped to adjust the method as needed.

Summary

Once you’ve provided the module with info about how it will be used within your application (the
CSS selector and template), you can work with the TypeScript language to provide whatever
business logic your application needs. As your logic updates properties in the class, those
updates will appear on the page via the data-binding (interpolation) system built into Angular.
We’ll explore this more in the next chapter.

 58

Chapter 10 Templates

The templates you create as part of your component are the powerful UI pieces that let your
component present data to your application user. In this chapter, we explore how to use
templates to render any data your application needs to present. The template compiler is found
in the @angular/compiler directory.

Template declaration

The template can be included in the metadata of the component (a good solution if the template
is small) or stored in a separate file and referenced via the templateUrl property. The

templateUrl property looks in the root level (same level as index.html). You can use the

moduleId metadata property, set to the value module.id. The following code sample tells the

component to look in the app/Views folder for the HTML.

Code Listing 56

@Component({

 selector: 'main-app',

 moduleId: module.id,

 templateUrl: '../Views/League.html',

It is your preference as to where you would like to store your template. If you choose to store it
in the metadata, you can use backtick characters (`) as delimiters to create a multiline template.

Now, let’s look at the content we can place in the template.

HTML

The templates are HTML code, with some enhancements to let them work with Angular
components. Most anything that goes in HTML can be used in a template, the notable exception
being the <script> tag, which will be ignored. Remember, the HTML code is meant to be

embedded within a CSS selector, so tags like <html>, <header>, and <body> won’t be of much

use.

Angular includes the concept of data binding, which is basically extending the HTML syntax to
bring component properties and expressions into the generated template.

 59

Interpolation

Interpolation is the simplest example of data binding. If you include a property name from your
component within {{ }}, the property value will be inserted into the generated HTML. If the

component changes the value of the property, the HTML snippet from that component’s
template will be updated on the screen.

Expressions

You are not limited to putting property names between {{ }}; you can also use expressions.

Angular will evaluate the expression (which must return a value) and convert the result to a
string, which is displayed. Note that any expressions that update variables (like the increment
and decrement operators) or create variables (like assignments) are not supported.

Note also that the expressions can reference component properties, but cannot reference global
variables or objects. You could, however, declare the object value you want to use in your
component, as shown in the following code.

Code Listing 57

 get BrowserUserAgent() : string
 {
 return navigator.userAgent
 }

Be sure to keep your template expressions simple and free of side effects. In general, reading a
property should never cause some other property or value to change.

Pipe operator

The pipe operator (|) allows you to apply a modifier that can control how a property appears

on the screen. The basic syntax is:

Code Listing 58

{{ property | pipe_name }}

There are a number of built-in pipes included with Angular. These include:

• uppercase: Converts property value to uppercase.
• lowercase: Converts property value to lowercase.
• percent: Expresses the decimal value as a percentage with the % sign.
• currency: Converts to a specified currency.
• date: Displays the property as a date string.

 60

Some pipes (such as currency and date) can optionally take a parameter to further customize
the data’s appearance. The parameter is separated from the pipe name by a colon (:). If

multiple parameters are used, they are all separated by colons.

For example, if a date property is simply coded as {{ SeasonStart }}, it will appear as:

Thu Aug 11 2016 18:50:35 GMT-0400 (Eastern Daylight Time)

If we want something a little bit less wordy, we could use the date pipe with an additional format
parameter.

Code Listing 59

<h4>New season starts on {{ SeasonStart | date:"fullDate" }}</h4>

This will display the date in a more readable format:

Thursday, August 11, 2016

Other date formats include:

• medium (Aug 25, 2016, 12:59:08 PM)
• short (8/25/2016, 12:59 PM)
• fullDate (Thursday, August 25, 2016)
• longDate (August 25, 2016)
• mediumDate (Aug 25, 2016)
• shortDate (8/25/2016)
• mediumTime (12:59:08 PM)
• shortTime (12:59 PM)

You can also chain pipes together. The following example will show the season start date in
medium format and uppercase.

Code Listing 60

<h4>Starts on {{ SeasonStart | date:"medium" | uppercase }}</h4>

Custom pipes

You can create your own pipes for data transformation as well. For example, many web
applications show dates and times in a friendlier fashion, such as “a few minutes ago…”,
“tomorrow,” or “last week.” We can create a pipe that works on a date property and returns a
string value to display on the site.

Creating the pipe class

You will need to create a component class, decorate it with the @Pipe keyword, and then

implement the PipeTransform method from the interface.

 61

Code Listing 61

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({name: 'FriendlyDate'})

export class FriendlyDate implements PipeTransform {}

The class code must implement the transform() method. This method takes a value

parameter (of the input data type) and returns a string. You can have additional parameters if
your pipe supports parameters.

Code Listing 62

transform(value: Date): string {

 let CurrentDay: Date = new Date();

 let diff: number = Math.floor((Date.parse(value.toString()) –

 Date.parse(CurrentDay.toString())) / 86400000);

 // Check for today, tomorrow, and yesterday

 if (diff==0) { return "today" };

 if (diff==1) { return "tomorrow" };

 if (diff==-1) { return "yesterday "};

 // Determine day of week

 let weekdays = new Array(7);

 weekdays[0] = "Sunday";

 weekdays[1] = "Monday";

 weekdays[2] = "Tuesday";

 weekdays[3] = "Wednesday";

 weekdays[4] = "Thursday";

 weekdays[5] = "Friday";

 weekdays[6] = "Saturday";

 let CurWeekDay:number = CurrentDay.getDay();

 let valueDay:number = value.getDay();

 if (valueDay > CurWeekDay && diff < 7) {

 return weekdays[valueDay];

 }

 return value.toDateString();

 }

 62

Our class code takes a date parameter and compares it to the current day. It returns
yesterday, today, or tomorrow if appropriate. It then checks to see if the date is less than

seven days out, and past the current weekday. If this happens, it simply displays the day name.
Finally, if it cannot come up with a simple expression, it defaults to showing the date as a
formatted string.

Using the custom pipe

To use the custom pipe, you will need to include it in your module declarations, as shown in the
following code.

Code Listing 63: app.module.ts Excerpt

import { FriendlyDate } from './app.friendlydate';

@NgModule({

 declarations: [AppComponent,AppStandings,AppScoring,AppAdmin,

 FriendlyDate],

Once it is declared, you can use it just as you would any other pipe.

Code Listing 64

 <p>Season starts: {{ SeasonStart | FriendlyDate }} </p>

Note: This example pipe is shown only to illustrate the basics of creating custom
pipes. If you want to use custom pipes, be sure to download the complete version
from GitHub.

Template statements

You can bind to various events using the template statement feature of Angular. A template
statement is an expression that does something, which can be an assignment or a call to a
method within your component. Template statements are how data gets updated in an Angular
application. A simple assignment statement might be:

Code Listing 65

ClubTitle = 'JB Soccer'

We could add a button in our template, and when the button is clicked (or another event
occurs), we could execute the statement.

https://github.com/SyncfusionSuccinctlyE-Books/Angular-Succinctly

 63

Code Listing 66

<button (click)="ClubTitle='JB Soccer'"> Take over club</button>

This tells Angular that when the click event of the button occurs, assign the new owner (JB
Soccer) to the component property ClubTitle. If club title was in the template, it would be

updated on the screen.

You can also call methods in the component to toggle between leagues on the screen, as the
following example shows.

Code Listing 67

<button (click)="onToggle()"> Toggle </button>

Be sure to keep your template statements simple, such as assignments or method calls.
Complicated business logic belongs in the component methods, not in the template statement.

Displaying data in templates

We’ve looked at a few simple expressions and statements to get data from our component on to
the application webpage. Let’s expand our class a bit to show how we can display arrays,
objects, etc., and not just the basic string and numeric data types.

Arrays

An array is a collection of TypeScript objects that can be simple base types or objects. Each
element in the collection is assigned an index value, starting at zero. You can create an array
using the following syntax options.

Code Listing 68

VarName: datatype [] = [list of initial values]

For example, to declare all the leagues at a soccer club, we might use the following.

Code Listing 69

public Leagues: string[] = ['Co-ed competitive',

 'Co-ed recreational',

 'Over 30 mens']

This syntax would create an array of strings called Leagues and provide three initial values.

You can also create an array using the following syntax.

 64

Code Listing 70

VarName: Array<datatype> = [list of initial values]

The data type does not only have to be a base type, but could also be an object or interface
implementation method. For example, if we have a Team class, we could use the following

syntax to create an array of Teams.

Code Listing 71

public Teams: Team [] = [new Team(1,’Nomads’),

 new Team(2,’Old guys’)];

Once the array is defined, all of the expected TypeScript and JavaScript methods, such as
length, push, slice, etc., can be used on the array.

Interfaces

TypeScript allows you to create interfaces, which are definitions of what a class that implements
the interface should look like. The interface consists of properties and methods, but no actual
code. The interface serves as the blueprint for classes that implement that interface.

By convention, interface names begin with the letter i, although it’s not a requirement. The

following code example shows a sample interface for a soccer team.

Code Listing 72: interfaces/team.ts

/**

 * Team interface

 */

export interface iTeam{

 id: number,

 name: string,

 type?: string // Co-ed, Over-30, Open

}

This interface requires an id number and a string name. It also supports an optional type

property, which is a string. You can also specify methods in the interface, which a class would
then be expected to provide the code for.

Note: The question mark after a property name means that the property is
optional.

 65

Classes

A class variable can also be used by itself or as an array data type. For example, we might

create a Team class that implements the iTeam interface, as shown in the following code.

Code Listing 73: classes/teams.ts

import { iTeam } from '../interfaces/Teams';

class Team implements iTeam {

 public id: number;

 public name: string;

 constructor(id: number, name: string) {

 this.id = id;

 this.name = name;

 }

}

In this example, the Team class implements the iTeam interface and provides a constructor that

takes the id and team name and assigns them to the public variables. We can then initialize

our array as shown in the following code listing.

Code Listing 74

public Teams: Team[] = [new Team(1,"Nomads"), new Team(2,"Old guys")];

Once you’ve created your variables and arrays, the template syntax provides methods and
directives for you to manipulate them.

Conditions

You can use the *ngIf syntax in your template to conditionally build part of the template-based

conditions in your component. For example, if we were to declare a Boolean value called
IsAdmin in our component, the following construct could hide or show the final menu option,

based on the IsAdmin value.

Code Listing 75

 <ul *ngIf="IsAdmin" class="nav navbar-nav navbar-right">

 Admin

 66

You can test expressions or simple variables, so Teams.length>0 will work just as well as a

Boolean variable. However, complex business conditions should be kept in the component to
keep the display code as simple as possible.

Switch statement

The switch statement in Angular can be used when you have a single property or expression to

be compared against multiple different values. There are two basic parts to the statement: the
first provides the property or expression you wish to evaluate, and the second part is the list of
values to compare the expression to.

Code Listing 76

[ngSwitch]="expression"

*ngSwitchCase="value"

*ngSwitchCase="value"

*ngSwitchDefault

You can use it to include some output in your HTML, as shown in the following example.

Code Listing 77

 <div class="container" [ngSwitch]="CurrentRole">

 <div *ngSwitchCase=10>Head Referee</div>

 <div *ngSwitchCase=20>Referee</div>

 <div *ngSwitchCase=30>Scorekeeper</div>

 <div *ngSwitchCase=40>Admin</div>

 <div *ngSwitchDefault>End User</div>

 </div>

This code sample assumes the component has set the CurrentRole property to a numeric

value. It then tests the property value and displays a different text, depending upon the role. The
final piece, the *ngSwitchDefault, provides the value to display if none of the prior conditions

are met.

Looping

The *ngFor syntax is used to loop through arrays or other types of collections. It allows you to

iterate each item in the collection, one at a time, and display it on the template page. The basic
syntax is:

 67

Code Listing 78

*ngFor = "let oneItem of collection"

 {{ oneItem }}

OneItem will contain whatever data type or object type was placed in the collection. For

example, if we wanted to list items on the template, we could use the following code sample.

Code Listing 79

 <li *ngFor="let oneTeam of Teams">

 {{ oneTeam }}

We can also extract elements from the object. For example, if our Teams object had both a team

id property and a TeamName property, we could use the following code example to build a select

list, allowing the user to pick a team.

Code Listing 80

 <select (change)="onTeamChange($event.target.value)">

 <option *ngFor="let oneTeam of Teams" value={{oneTeam.id}}>

 {{ oneTeam.TeamName }}

 </option>

 </select>

The (change) syntax tells Angular to call a component method (onTeamChange) whenever the

value in the select box is changed. The event target value will contain the value (team ID) of

the selected element.

Summary

The Angular template system allows you to bind data from your component to display in the
browser, as well as directives to control what is displayed and loop over collections. We will use
these features in our example applications in the next few chapters.

 68

Chapter 11 Modules

Angular uses modules as a method of tying various components, directives, pipes, and services
together in a single, cohesive unit. The module lets you make some features public for
component templates, as well as make services available at the application level.

Basic module options

To create a module, you need to define a class and decorate it with the @ngModule keyword.

You will need to begin by importing two modules from Angular.

Code Listing 81

// Get the core modules from Angular

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

The NgModule provides the decorator for setting up the module. The BrowserModule provides

important services that the entire application can use (such as NgFor and NgIf). Your module

should always import these two, and you can import additional modules from Angular or third-
party components as your application grows.

You will also need to import your application components.

Code Listing 82

// Get your application components

import { AppComponent } from './app.component';

import { AppStandings } from './app.standings';

declarations

The declarations section declares an array of all the components, directives, and custom

pipes we want our module to include.

Code Listing 83

declarations: [

 AppComponent,

 AppStandings

],

 69

For your main application, you will typically declare the component that produces the menu and
the components used to present various data views. These declarations are usable within the
module, but are not visible outside the module unless they are explicitly exported.

imports

If you want to provide components or directives to the components that are referenced within
the module, you will need to include them in the imports array. For example, the following

listing allows the app component to use the standard directives (such as *NgIf) and provides

access to the routing components (see the next chapter for details about routing).

Code Listing 84

imports: [BrowserModule, FormsModule, HttpModule]

providers

The providers keyword contains an array of services that will be made available to the entire

application. For example, the following code sample makes the appRoutingProviders from

Angular and our own internal SoccerService available throughout the entire application.

Code Listing 85

 providers: [appRoutingProviders,

 SoccerService],

Any services in the main application module can be injected into any component. For example,
if a component wanted to use our SoccerService, you would normally need to include a

providers section in the component itself.

Code Listing 86

providers: [SoccerService]

However, since the SoccerService is specified in the main module definition, you do not need

to specify it in the component. Angular will know how to resolve the provider and inject it into the
component. The component constructor will still request the service, and Angular will handle it.

Code Listing 87

public constructor(private _soccerService: SoccerService)

 70

exports

The exports keyword provides an array of components that the module exports, which allows

importing modules to use them. Declarations within the module are private; you will need to
specifically export components, directives, etc., that you want to share with other modules.

Code Listing 88

exports: [AppComponent]

bootstrap

The bootstrap keyword provides an array of all components that can be bootstrapped.

Typically, this is the app component only. If a component can be bootstrapped, it will have its
own selector, template, etc., and allow Angular to add it to a website.

Code Listing 89

bootstrap: [AppComponent]

app.module.ts

When you create an Angular application, you should define the main application module, named
app.module.ts. The simple module code (that exports the AppComponent) is shown in the

following example.

Code Listing 90: app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { AppRoutingModule } from './app-routing.module';

@NgModule({

 imports: [BrowserModule],

 declarations: [AppComponent],

 bootstrap: [AppComponent]

})

export class AppModule { }

 71

This module only provides AppComponent to the main application for the bootstrapping

operation. You can skip this and directly bootstrap the AppComponent, but as your application

grows, the module provides a convenient way to add more functionality in one location.

main.ts

If you use a module rather than a single component, you will need to adapt your main
application to bootstrap the module, rather than the component. The code to bootstrap the
module is shown in the following code.

Code Listing 91

// Get the bootstrap component from Angular

import { platformBrowserDynamic } from '@angular/platform-browser-
dynamic';

// And get our application module

import { AppModule } from './app.module';

// Then launch the application

platformBrowserDynamic().bootstrapModule(AppModule);

Summary

As your application grows, the ability to bundle features into a module will help build cohesive
units of functionality. Some of the many benefits that Angular offers are components and
bundles—ways to build loosely coupled applications—which are easier to debug and maintain.

 72

Chapter 12 Our Application

In this chapter, we are going to put together a simple example application called the Soccer
Dashboard to tie everything together in Angular application development. The application is
used to display standings for a sports league, and to allow real-time updates as the score
keepers post the scores.

In one of my soccer leagues, many of the players wanted to know the standings and results
right after the games were finished. By allowing the referees to record the scores on their mobile
phones, even as they are leaving the field, it is very possible that the website showing the
standings could be up to date before the players leave the fields for their trip home.

 Note: The code samples in this book are available for download here.

Screen mockups

The following are mockups (generated with Balsamiq) that illustrate what the application should
look like. One benefit of mockups is that you can avoid the “iceberg effect,” where clients think
the application is further along because they see the screens (the tip of the iceberg) without
realizing the amount of code that still needs to be completed.

Standings page

The Standings page shows the teams sorted by points (assuming three points for a win and one
for a tie). The secondary sort order is total goals. Keep in mind that when designing any ranking
system, you will need multiple sort criteria to handle ties. Also, express the ranking in the most
common style for the appropriate sport. Soccer uses points, while baseball uses games behind.

Figure 11: Standings Page

https://github.com/SyncfusionSuccinctlyE-Books/Angular-Succinctly

 73

Note: If you were to run a tournament, you could show the standings on a large
monitor with a JavaScript timer to re-poll the service and get updated scores
every few minutes.

Scorekeeper’s page

This page is designed to be as simple as possible, so the referees or scorekeepers can quickly
update the game results (feeding the Standings page). They select the game from the drop-
down list, and then add the scores.

Figure 12: Scorekeeper’s page

The component code will update the scores in the database, and the Standings page will be
updated when it is next refreshed.

Note: The module to record the scores would generally require some sort of
authentication method, such as a login password or OAuth.

 74

Summary

This application should provide a basic walkthrough of how to create modules, menus, services,
etc., in an Angular application. The focus is on the front end, and the data is stored in SQL
database tables. You can manually update those tables, or expand the application to create
some additional Angular components to allow an admin user to update the base data tables.

 75

Chapter 13 Menu Navigation

Typical applications have multiple views and some sort of navigation method to move between
them. The Router module is used to handle the navigation between views. For our Soccer

Dashboard, we will need three components: a Standings page, a Scoring page, and an Admin
page.

Figure 13: Sample Menu

We are going to use Twitter Bootstrap as our primary UI system and Font Awesome for some
icons. Be sure to include these in your Angular CLI configuration file (see Chapter 5 for details).

Base href

HTML5 browsers provide support for browser history modification through new methods like
pushState() and replaceState(). These methods allow Angular to create URLs for in-app

navigation. In order to support this navigation, there are a few steps you need to follow. The first
is to declare a base reference in your main page (index.html). The following line should be
added in the head section.

Code Listing 92

<base href="/"> <!-- Used to compose navigation URLs -->

Note: The Angular CLI application will already include the href line for you.

 76

App component

The app component that we created in prior pages will be adapted to become a navigation
component now, so we need a new component with a template focused on menus or buttons to
navigate to different components.

Views folder

You can design your folder structure in any fashion you’d like. I place my template views into a
folder called Views. It is a preference, not a requirement, but it makes my separation of
business logic and display easier to manage. Here is our main application component for the
Soccer Dashboard:

Code Listing 93: app.component.ts

<!--

 Main application component

-->

import { Component } from '@angular/core';

 @Component({

 selector: 'app-root',

 templateUrl: '../views/Main.html'

 })

export class AppComponent {

title = 'Soccer Dashboard';

}

Main menu

Our main menu view code, shown in Code Listing 94, is a Twitter Bootstrap navbar setup. The

systems use <a> tags to indicate the menu links. However, rather than the standard href

property, we will use the Angular property called routerLink. This property will serve to tell the

navigation page which “link” to go to when a menu item is selected. We will define these links
later in this chapter.

Code Listing 94: app/views/main.html

<!--

 Main menu view

-->

 77

<nav class="navbar navbar-expand-sm bg-light">

 <div class="container-fluid">

 <i class="fa fa-futbol-o"> </i>{{ title }}

 <ul class="nav navbar-nav">

 <li class="nav-item">

 <a class="nav-link active" routerLink="/Standings"

 routerLinkActive="active" >Standings

Scoring

 <li class="nav-item float-xs-right ">

 Admin

 </div>

</nav>

<router-outlet></router-outlet>

The final line, <router-outlet>, is a placeholder for where the router output will be written.

Placeholder components

To create and test the menu, we will create simple placeholder components using the same
code.

Code Listing 95: app.standings.ts

/*

 Standings component

*/

import { Component } from '@angular/core'; // Component metadata

 78

import { ViewEncapsulation } from '@angular/core'; // Encapsulation enum

 @Component({

 encapsulation: ViewEncapsulation.Native, // Use Shadow DOM

 template: '<h3>Standings</h3>'

 })

export class AppStandings {}

Notice that there is no selector specified in this component, since the router system will
determine where to put the generated output when this component is used. Create a similar
component for the AppScoring and AppAdmin menu items.

Route definitions

To configure the routing, you will first need to define a series of route definitions. The definition
contains at least two elements:

• path: The name users see in the address bar.
• component: The component that is called when we navigate to this route.

Path

The path is the name of the “URL” that the router system will use to link to our component.

There are no slash marks in the path name; the router will handle the name resolution.

Component

The component itself is the name of the existing component that should be used when a path is

chosen.

For example, we might use the following construct for the link to the Standings page.

Code Listing 96

{ path: "Standings",
 component: AppStandings }

app-routing.module.ts

The app-routing.module.ts file is created to build and configure your Routes to various

application components.

 79

Code Listing 97: app-routing.module.ts

Import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { AppStandings } from './app.standings';

import { AppScoring } from './app.scoring';

import { AppAdmin } from './app.admin';

The first section of the code imports the routing module from Angular and all of the components
you will need in your application. Next is the construction of the application routes.

Code Listing 98

const routes: Routes = [

 { path: "Standings",component: AppStandings },

 { path: "Scoring",component: AppScoring },

 { path: "Admin",component: AppAdmin },

];

The final section creates a public constant of the array of routes we build. We will access this
array in our app.module.ts file.

A couple things about the routes to keep in mind:

• You can pass a parameter to the routes using the :parameter syntax, as shown in the

following code.

Code Listing 99

{ path: 'game/:id', component: GameDetails }

• You can use '**' as a wildcard path name, the default component (such as a 404 error

page) to use if the router cannot match any path.

Code Listing 100

{ path: '**', component: PageNotFound }

Note: One thing to keep in mind is that the order of the array is important, since
the router searches the array until it finds the first match. If you put a wildcard
element in your first array, it would never reach any of the other paths in the
route.

 80

App module

The app.module.ts module will provide the link between the routing we defined in our
application.

Code Listing 101: app.module.ts

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { AppStandings } from './app.standings';

import { AppScoring } from './app.scoring';

import { AppAdmin } from './app.admin';

@NgModule({

 declarations: [AppComponent,AppStandings,AppScoring,AppAdmin],

 imports: [BrowserModule,AppRoutingModule],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

We import our various modules (both the Angular code modules and the application modules),
and then we set up the declarations to organize our application. We import our routes from the
app-routing.module file we created.

Default route

You can add a path to the route table to provide an action to take if no route is specified. In this
case, if you open the site and do not specify a page, we want to redirect the user to the
Standings page.

The following snippet shows the additional route table option to redirect. The redirectTo
parameter is a slash, followed by the name of the page to go to in the route table.

Code Listing 102

{ path: '', redirectTo:'/Standings', pathMatch: 'full' }

 81

You should provide a default path, else the code will fall to the final route, and report a Page Not
Found error.

Page not found

You can add a route using the following syntax that will be called if the page is not found.

Code Listing 103

{ path: '**', component: PageNotFound }

This allows you to display an error message if the user enters an invalid URL. An example
PageNotFound component is shown in the following code.

Code Listing 104

// Angular modules

import { Component } from '@angular/core'; // Component metadata

import { ViewEncapsulation } from '@angular/core'; // Encapsulation Enum

// Component metadata, defining the template code

@Component({

 encapsulation: ViewEncapsulation.Native, // Shadow DOM

 template: '<h3>Page not found</h3>'

})

export class PageNotFound {

 }

You could add code to the component to log the URL failures to see if a user might be trying to
hack into the website, or if a link on the site might be invalid.

Tip: The PageNotFound condition is not an actual condition, but simply a default of
what to do if all the routes are exhausted. Be sure to add the route definition to the
end of your Routes collection.

Navigation

With routing defined and integrated into our application, the main menu will now load our
components into the <router-output> section, as shown in Figure 14. Notice that the URL

also changes to reflect our route name.

 82

Figure 14: Routing in Action

Summary

By setting up the router system and routes, we can now provide the navigation links to move
between our application’s views. In the next chapter, we will begin to add some actual code to
the views, instead of our simple placeholder components.

 83

Chapter 14 Services and Interfaces

Often when developing applications, you will need some code to provide functionality or data to
multiple components. For that type of operation, Angular allows you to create reusable services
and pass (inject) them into your component for use. Shared data or functionality should
immediately shout “create a service!”

Standings page

The Standings page is going to be broken into two pieces: the display and the data component.
Separation of presentation and data is almost always a preferred approach to building
applications. We will provide a service to get the data needed and a presentation layer to show
the data.

Figure 15: Standings Page

As the scores are updated in the scoring component, the standings are updated, and when the
browser revisits the page, the updated standings will appear.

 84

Data model

The basic data model for our Soccer Dashboard is the schedule data. The schedule data
includes both games already played (for the standings module) and games yet to be played for
the scoring module. Since the data model will serve both components, we are going to create a
service to handle it.

Database design

We could use a Microsoft SQL Server database to hold our tables. Angular will rely on some
sort of web service to communicate with the data, so any database system (or even text files)
could be used; it is a black box to Angular.

teams table

Each soccer team has a row in the teams table. The structure of the table is:

Column Data Type Notes

Id int primary key

Name varchar(32) not null

You’d have more fields, such as start date, team type (co-ed, over-30, etc.), but we are only
showing the basic structure. Feel free to enhance as you’d like.

refs table

The refs table keeps track of the referees that the club uses. Each referee will have a user ID

so they can log in to see the game they need to record the scores for.

Column Data Type Notes

Id int primary key

RefName varchar(32) not null

UserId varchar(20) not null

schedule table

The schedule table contains the games that are scheduled and those that have already been

played. Any game not yet played will contain a -1 in the scoring columns. This allows the

referee to find games that have likely been played (on a date in the past), have not yet been
scored (where scores are -1), and were refereed by the user.

 85

Column Data Type Notes

Id int primary key

PlayingDate date not null

HomeID int foreign key to teams

AwayID int foreign key to teams

HomeScore int defaults to -1

AwayScore int defaults to -1

RefID int foreign key to refs

notes varchar(max)

Service design

The service design process consists of two steps. First, we design the interfaces to put and get
the data from the database. Then we design the service to make the data available to the
various components. Within the app folder, create the interfaces and services folders.

Interfaces

Even though the database design has three tables, we only need one interface to read and
update the games table. We will also create an interface to hold the rankings, even though this

will be computed in the code, rather than stored in the database.

Code Listing 105: Schedule Interface

/* Schedule interface */

export interface iSchedule{

 id: number,

 PlayingDate: Date,

 HomeTeam: string,

 AwayTeam: string,

 HomeScore: number,

 AwayScore: number,

 RefName: string,

 notes?: string }

 86

Note that even though the physical table relies on foreign keys to link the content together, our
interface has the actual team and referee names. Most likely, the database has a view to create
the populated schedule from the three physical tables.

Code Listing 106: Ranking Interface

/* Rankings interface */

export interface iRanking {

 TeamName: string,

 GamesPlayed: number,

 Wins: number,

 Ties: number,

 GoalsFor: number,

 GoalsAgainst: number

}

Service code

With our interfaces built, we can put together a service that provides two basic functions. One is
to return the entire schedule as a collection of schedule objects. The second function is to
update the scores and notes for a particular schedule ID number.

Getting the data

In this chapter, we are going to create internal data for mockup and testing purposes. In a later
chapter, we will get the data from an HTTP web service call. For now, this file will be stored in
the services folder.

Schedule-data.ts

We will create a TypeScript file called Schedule-data.ts. The purpose of the file is to provide
data to the service.

Code Listing 107

import {iSchedule} from "../interfaces/schedule";

import {iTeam} from "../interfaces/teams";

export const SEASON_SCHEDULE: iSchedule[] =

 [

 87

 {id:1,PlayingDate:new Date(2016,8,23),

 HomeTeam:'Old Men United',AwayTeam:'Kellie Kickers',

 HomeScore:4,AwayScore:3,RefName:'Joanne',notes:'Overtime
game'},

 {id:2,PlayingDate:new Date(2016,8,26),

 HomeTeam:'Torn Achilles',AwayTeam:'422 Nomads',

 HomeScore:7,AwayScore:2,RefName:'Colin',notes:''},

 {id:3,PlayingDate:new Date(2016,8,28),

 HomeTeam:'Blue Devils',AwayTeam:'FC Dauntlesss',

 HomeScore:4,AwayScore:6,RefName:'Gene',notes:''},

 ...

]

export

 const TEAMS: iTeam[] =

 [

 { id:1,name:"Old Menu United",type:"Over 30"},

 { id:2,name:"422 Nomads",type:"Over 30"},

 { id:3,name:"FC Dauntless",type:"Over 30"},

 { id:4,name:"Kellie's Kickers",type:"Over 30"},

 { id:5,name:"Blue Devils",type:"Over 30"},

 { id:6,name:"Torn Achilles",type:"Over 30"}
]

The first line imports the schedule interface into the component. The component itself simply
exports a collection of schedule objects. We now have the data elements (interface and

collection) that we need to provide to our service.

Injectable

We now need to make a class that will be used as a service to other components. The first step
is to use the @Injectable method, which means the code can be injected into other

components. We will need to import both the Injectable module from Angular and the module

to provide the data that we just wrote.

Code Listing 108

import {Injectable} from '@angular/core';

 88

import {SEASON_SCHEDULE, TEAMS } from './schedule-data';

@Injectable()

We follow this with the class code, which will contain the various methods that the service will
offer.

Code Listing 109

export class SoccerService{ method calls }

We can have both private and public (default) methods in the service class; it follows the rules

of a TypeScript class.

Code Listing 110: SoccerService.ts

/*

 * SoccerService

 * Joe Booth: Angular Succinctly

 */

import { Injectable } from '@angular/core';

import { SEASON_SCHEDULE, TEAMS } from './schedule-data';

@Injectable({

 providedIn: 'root',

})

export class SoccerService {

 getSchedule() : any {

 return Promise.resolve(SEASON_SCHEDULE);

 }

 getTeams() : any {

 return Promise.resolve(TEAMS);

 }

private ComputeRankings() {

// To compute rankings from the schedule

 }

}

 89

In our service, we are offering two methods: the getSchedule() and the getTeams() methods.

They promise to return a data collection (in this case, from the schedule-data class). Since the

service simply returns the data, it doesn’t care how the data is generated—it expects the
schedule-data class to take care of that. In this example, we might need a private method that

computes the rankings from the schedule data. (We will do this in a later chapter.)

Note: Promise is a TypeScript/JavaScript command that allows asynchronous
operations to be performed. The .resolve keyword provides the source of the
data that will return the object.

Not all browsers support asynchronous operations, so you can make standard calls by returning
the data directly rather than using a promise. For example:

Code Listing 111

getTeamsAsync() : any {

 return Promise.resolve(TEAMS);

 }

getTeams() : any {

 return TEAMS;

 }

I would recommend providing both methods in your services so that as browsers begin to
support ECMAScript 6, it should an easy update to the service to start taking advantage of the
asynchronous operation support.

Consuming the service

Now that our service is created, we want to use it in our components. In this case, we’ll use it to
provide the data the component needs to display.

Importing the service

The first step is to tell our components where they can find the service, using the import

statement. We need to add the following lines to app.Scoring.ts.

Code Listing 112

import { SoccerService} from './services/soccerService';

import { Title } from '@angular/platform-browser';

 90

I’ve put the services and interfaces in separate folders within the app folder. Be sure to adjust
your file locations if you use a different structure. You will need to import this service to any
component that uses the service. I’ve also decided to import the Title service from Angular

(allowing me to set the browser’s title bar).

Code Listing 113

// Our interfaces

import { Team } from './interfaces/Teams';

import { Title } from '@angular/platform-browser';

import { Ranking } from './interfaces/rankings';

import { Schedule } from './interfaces/schedule';

import { SoccerService} from './services/soccerService';

Adding the provider metadata

The next step is to tell the component about service providers it will use. This is a new
component directive called providers. It takes a list of the services and other injectable

modules our component might need.

Code Listing 114

providers: [Title,SoccerService]

In this example, we are injecting the Title module from angular/platform-browser, and our

soccerService module. You can add as many injectable modules as needed for your

component.

Update the constructor

The constructor of your component will need to be updated to receive the injected modules. For
example, our soccer component is going to update the browser title and get its data from the

soccerService. The following code shows the modified constructor.

Code Listing 115

public constructor(private _titleService: Title,

 private _soccerService: SoccerService) {

 this._titleService.setTitle("422 Soccer");

 this._soccerService.getTeams();

 }

 91

Although you can name the injected modules any way you choose, consider using the
underscore character to distinguish them from other variables within your component. In Code
Listing 115, we are using the Title service from Angular to update the browser’s title, and we

will add our own method, GetTeams(), to copy the team data from the service into a collection

variable within our component.

Using the service

Our service provides different methods for returning data. We’ve added a method to get the
teams both synchronously and asynchronously. I’ve added a Boolean flag called UsingAsync to

my component (and defaulted it to false for now). The GetTeams method will use this flag to

determine how to update the internal Teams collection object. Remember that if the method is

running asynchronously, it is possible that your code will continue to run before the method
completes.

Code Listing 116

 getTeams() {

 if (this.UsingAsync) {

 let xx = this._soccerService.getAllTeamsAsync();

 xx.then((Teams:Team[])=> this.MyTeams =Teams);

 }

 else

 {

 this.MyTeams = this._soccerService.getAllTeams();

 }

 }

In this example, we are coding both methods to get the team data, but only using the
synchronous version for now.

The UsingAsync Boolean property (when true) uses the xxxAsync() methods. These

methods call the service and get a promise back.

Code Listing 117

 let xx = this._soccerService.getTeamsAsync();

In the second portion, the then() tells the method what to do once the service is back. In this

case, we are simply taking the service results and updating our MyTeams variable with them.

Code Listing 118

 xx.then((Teams:Team[])=> this.MyTeams =Teams

 92

You can learn more about promises and asynchronous programming in TypeScript and
JavaScript by downloading any of the books mentioned previously from the Syncfusion library.

App.standings

The modified app.standings component code is shown in Code Listing 119.

Code Listing 119

import { Component } from '@angular/core';

import { Title } from '@angular/platform-browser';

// Our interfaces

import { iTeam } from '../interfaces/Teams';

import { SoccerService} from '../services/soccerService';

 @Component({

 template: '<h3>Standings</h3>',

 providers: [Title,SoccerService]

 })

export class AppStandings {

 public UsingAsync: boolean = false;

 public MyTeams: iTeam[];

 public constructor(private _titleService: Title,

 private _soccerService: SoccerService) {

 this._titleService.setTitle("422 Sportsplex");

 this.getTeams();

 }

 getTeams() {

 if (this.UsingAsync) {

 let xx = this._soccerService.getTeamsAsync();

 xx.then((Teams:iTeam[])=> this.MyTeams =Teams);

 }

 else

 {

 this.MyTeams = this._soccerService.getTeams();

 }

 93

 }

}

Summary

A service is a TypeScript class that provides data (or other functionality) to components as
needed. In this chapter, we looked at a simple service that returns data to the components and
showed how to create the service and inject it into the component. We also covered how to use
the service methods within the component.

When you are designing systems, you should always consider writing any data provider as a
service. Separation of data and presentation is part of Angular and makes development much
more robust. The template handles the view, the components class, and the logic specific to the

component, and the service provides data or globally needed business functionality.

 94

Chapter 15 Standings

In this chapter, we are going to use the service we created in the previous chapter to display the
standings on the website.

Standings component

The standings component is responsible for showing the standings on a website. A club might

use a large video monitor to let the players see the website between games.

Code Listing 120: App.standings.ts

// Import various modules we might need,

// module name and what file/library to find them in

import { Component } from '@angular/core';

import { Title } from '@angular/platform-browser';

// Our interfaces

import { Team } from '../interfaces/Teams';

import { Ranking } from '../interfaces/rankings';

import { Schedule } from '../interfaces/schedule';

import { SoccerService} from '../services/soccerService';

We need to import some modules from Angular, as well as a few of our own interfaces and
services.

Code Listing 121: App.component.ts Continued

// Component metadata, defining the template code

@Component({

 templateUrl: '../views/Standings.html', // HTML template name

 // Set styles for template

 styles: [`

 h3 {text-align:center;color:navy;font-size:x-
large;margin:0px;}

 table {

 width:92%;margin:1em auto;font-size:large;

 font-family:"Comic Sans MS", cursive, sans-serif; }

 95

 th { text-decoration:underline;}

 `],

 providers: [SoccerService]

})

Note that in the templateUrl property, the views folder is relative to the app folder. Be sure to

adjust your path if you choose a different folder structure.

Template page

I generally place my templates in a folder called Views under the main app folder. This is strictly
a style choice—you can place them anywhere and reference their locations properly. However, I
prefer keeping views, interfaces, and app code in their own folders.

Code Listing 122: Views/standings.html

<h3>{{LeagueName}} Standings</h3>

<table >

 <thead>

 <tr>

 <th style="width:35%;"></th>

 <th style="width:13%;text-align:right;">Games</th>

 <th style="width:13%;text-align:right;">Points</th>

 <th style="width:18%;text-align:right;">Goals for</th>

 <th style="width:21%;text-align:right;">Against</th>

 </tr>

 </thead>

 <tbody>

 <tr *ngFor="let currentRow of Standings">

 <td>{{ currentRow.TeamName }}</td>

 <td style="text-align:right;">{{ currentRow.GamesPlayed
}}</td>

 <td style="text-align:right;">

 {{ currentRow.Wins*3 + currentRow.Ties }}</td>

 <td style="text-align:right;">{{ currentRow.GoalsFor }}</td>

 96

 <td style="text-align:right;">{{ currentRow.GoalsAgainst
}}</td>

 </tr>

 </tbody>

</table>

The template code is composed mostly of HTML and interpolation variables, such as the
LeagueName at the top of the page. We also use the *ngFor directive to loop through the

Standings collection in the component. Most of the information is straight from the properties,

although we use the interpolated expression currentRow.Wins* 3 + currentRow.Ties to

compute the points column. In general, you should let the component perform such

calculations, but I wanted to provide a small example of how you can do calculations within the
template as well.

Class code

Our class code is going to declare an empty Ranking array, then ask the service for the

schedule data. Once the schedule data is returned, a public method will walk through the
schedule and compute the rankings, updating the Ranking array.

Code Listing 123

export class AppStandings {

 // public properties (default is public)

 public LeagueName: string;

 public UsingAsync: boolean = false;

 public MySchedule: Schedule[];

 public Standings: Ranking[];

The constructor code:

Code Listing 124

public constructor(private _soccerService: SoccerService) {

 this.LeagueName = "Over 30 men's league";

 this.getSchedule();

 this.ComputeRankings();

 }

 97

The reason ComputeRankings is public is that we might want to wrap the call in a timer function,

in case the club is running a tournament and wants standings updates in real time.

getSchedule()

This code gets the schedule data from the service and places it in the MySchedule array.

Code Listing 125

 private getSchedule() {

 if (this.UsingAsync) {

 let xx = this._soccerService.getScheduleAsnyc();

 xx.then((Schedules:Schedule[])=> this.MySchedule =Schedules
);

 }

 else

 {

 this.MySchedule = this._soccerService.getSchedule();

 }

 }

Once the schedule data is available, we can call ComputeRankings to update the Rankings

collection (which is what the template displays).

ComputeRankings

ComputeRankings is an example of business logic in a component. Rather than have the

service determine the rankings (a function only needed by the component), we will rely on the
service to provide the schedule data, and let the component determine the ranking.

In general, soccer rankings award three points for a win and one point for a tie. There are often
tie-breaker rules, such as goals scored and head-to-head. So our component needs to read the
schedule and sum up the wins, ties, goals for, and goals against. This data is placed into the
ranking collection, which is then sorted to display the Standings page.

Code Listing 126

public ComputeRankings() {

 var curDate: Date = new Date();

 var TeamAt: number;

 this.Standings = []; // Empty the array

 this.MySchedule.forEach(element => {

 98

 // If game has already been played

 if (element.PlayingDate < curDate && element.HomeScore>=0) {

 TeamAt = this.FindTeam(element.HomeTeam);

 if (TeamAt<0)

 {

 this.Standings.push(

 { TeamName: element.HomeTeam,

 GamesPlayed:0,Wins:0,Ties:0,

 GoalsFor:0,GoalsAgainst:0 })

 TeamAt = this.Standings.length-1;

 }

 this.UpdCurrentRow(element,TeamAt,"H");

 TeamAt = this.FindTeam(element.AwayTeam);

 if (TeamAt<0)

 {

 this.Standings.push(

{ TeamName: element.AwayTeam,

 GamesPlayed:0,Wins:0,Ties:0,

 GoalsFor:0,GoalsAgainst:0 })

 TeamAt = this.Standings.length-1;

 }

 this.UpdCurrentRow(element,TeamAt,"A");

 }

 });

The code reads through the schedule, and for any game in the past that has already been
played (a HomeScore of -1 means not yet played), it adds the statistics about the game to the

Standings collection for the matching team (using the UpdCurrentRow private method).

Once the collection is built, we use the TypeScript code to sort the collection based on total
points, and then GoalsFor.

Code Listing 127

// Sort standings

this.Standings.sort((left, right): number =>

 99

 {

 if (left.Wins*3+left.Ties<right.Wins*3+right.Ties) return 1;

 if (left.Wins*3+left.Ties>right.Wins*3+right.Ties) return -1;

 // Else, then are tied, typically we'd add addition logic to break
Ties

 if (left.GoalsFor<right.GoalsFor) return 1;

 if (left.GoalsFor>right.GoalsFor) return -1;

 // Finally, return zero if still tied.

 return 0;

 })

 };

The sort function compares two objects (so we can access the properties) and returns 1 if the

right side is higher, -1 if the left side is higher, and 0 for a tie.

Note: We could add additional tie-breaker rules if needed, particularly early in a
soccer season when only a few games have been played.

There are a couple private routines used to support the Standings methods. The

UpdCurrentRow updates the Standings collection based on the outcome of the selected game

from the schedule.

Code Listing 128

private UpdCurrentRow(element:iSchedule,TeamAt:number,HomeAway:string) {

 this.Standings[TeamAt].GamesPlayed++;

 if (HomeAway=="H") {

 this.Standings[TeamAt].GoalsFor += element.HomeScore;

 this.Standings[TeamAt].GoalsAgainst += element.AwayScore;

 // Win

 if (element.HomeScore>element.AwayScore)

 {

 this.Standings[TeamAt].Wins++;

 }

 }

 if (HomeAway=="A") {

 100

 this.Standings[TeamAt].GoalsFor += element.AwayScore;

 this.Standings[TeamAt].GoalsAgainst += element.HomeScore;

 if (element.AwayScore>element.HomeScore)

 {

 this.Standings[TeamAt].Wins++;

 }

 }

 if (element.HomeScore==element.AwayScore)

 {

 this.Standings[TeamAt].Ties++;

 }

 }

The FindTeam method searches the Standings collection for the team by name.

Code Listing 129

// Find the team or -1

 private FindTeam(TeamName:string) : number {

 var FoundAt: number = -1;

 for (var _x=0;_x < this.Standings.length;_x++)

 {

 if (this.Standings[_x].TeamName==TeamName) {

 return _x;

 }

 }

 return FoundAt;

 }

Standings display

When our component is completed and run, the following screen is displayed.

 101

Figure 16: Standings Page

Summary

This chapter illustrated how to combine a service (to provide schedule data) with a component
to compute and display rankings.

 102

Chapter 16 Editing Data

In the soccer example from the last chapter, the Standings component only displayed the data;

it did not allow you to edit or update the data at all. For scoring, we need to look up data from a
drop-down list, and then allow a user to edit the scores. Finally, the new scores need to be
written back to the component. For this, we need to dig deeper into data binding.

Data binding

Data binding is the linking of properties from your component to your generated template HTML.
You’ve seen one example with interpolation, where the property values between the braces {{
}} are bound to display elements within the HTML.

Property binding

Another method of binding is to assign a component property to an HTML property. For
example, if you wanted to bind the name of the club into an input text, you could use the
following syntax.

Code Listing 130

[HTML property]="Component property"

Code Listing 131

<input type="text" [value]="ClubOwner" >

You are not limited to text boxes; you can bind to styles, properties, classes, and more. For
example, you might have an tag that represents an avatar or photo for a person. The

[src]="personAvatar" could be used to display the person’s avatar or photo in an HR

system.

Attribute binding

Attributes in HTML are used to initialize various elements’ properties. They are assigned when
the HTML is written. When the DOM is built, it converts many of the attributes to properties for
manipulation in your client-side code. However, attributes set in HTML are always strings, while
the DOM property that corresponds to the attribute can be any data type.

You can use the attr.name syntax to update the string value of the attribute, although

sometimes that might not give you the intended effect. For example, the disabled attribute

must be removed, not simply set to an empty string. In general, the property binding should be
used to manipulate the DOM behavior.

 103

Code Listing 132

<button [attr.disabled]="true"> Discard changes </button>

If you want to enable the button, you would have to remove the disabled attribute, not simply

set the attr.disabled to false (which will have no effect). Fortunately, there is also a

property called disabled, which can be manipulated using the property binding.

Code Listing 133

<button [disabled]="FoundChanges"> Discard changes </button>

Event binding

If you want to bind a statement to an event of an element, you enclose the event name in
parentheses. This is how you would create an association between any event and your
component code. For example, if you have a Save button, you could use the following syntax to
call your component’s save method when the button is clicked.

Code Listing 134

<button (click) = "SaveData()" > Save changes </button>

Common events you might want to bind include:

• blur: User leaves an input field.
• focus: User enters an input field.
• submit: User clicks a button that submits the form.
• change: User changes value of an input element.

There are other events, such as key up, key down, and window resize.

When the event method is called, a parameter called $event is available to the method. The

contents of the $event object will vary based on the DOM element and the event called. For

example, the input event has a property called target.value, which contains the content of

the input field.

Class binding

Class binding allows your component to specify a class name. For example, imagine we have
two classes: one for current accounts, and one for past-due accounts. Inside your component,
you have a method called InvoiceClass() that returns a string, either Current or PastDue.

The following syntax would let the component set the color for each invoice in the template
code.

 104

Code Listing 135

 {{ InvoiceNumber }}

You can also bind a class name to a Boolean component property or function. For example, we
might show the top three scorers with a class name called Top3. Once the fourth-highest scorer

is found, we want to remove the class.

Code Listing 136

 {{ PlayerName }}

Once the InTopThree method returns false, the Top3 class will no longer be applied to the

player name span.

Style binding

The style binding allows you to use a function or expression to apply a style to an element. For
example, imagine we had a list of find results, but any results more than 30 days old should
appear a bit faded.

Code Listing 137

{{article}}

In this example, the Boolean component public property, isOver30, is evaluated. If true, then

the style for the background color is set to antiquewhite; otherwise, it is set to white. The

general syntax is:

Code Listing 138

[style.style property name] = "expression" | function | style value

One-way binding summary

Here are some examples of one-way binding, all following the same general syntax:

• [target] (Can be a property, class, style, etc.)
• (target) (Event name)
• = "expression or statement"

The one-way binding specifies the target and the expression, function, or inline statement that
should be tied to the target object. The key takeaway is that the component provides the target
value, which is either a function or a property value. However, the target value is not explicitly
returned or updated in the component.

 105

Our next section discusses two-way binding techniques, which get data back AND forth from the
template page to the component.

Note: When writing component functions that return values for the target, be sure
that the data type matches the expected value. In addition, the function should be
simple and not impact other component variables that might be referenced in
other bindings.

Interpolation and property binding can perform the exact same functionality;
behind the scenes, Angular converts interpolations to property bindings. There is
no reason to choose one method or the other; however, I would suggest that you
lean toward readability and be consistent with your usage.

Two-way binding

Two-way binding is used to both display a component property and update the property when
the user makes changes while in the template. Two-way binding is a combination of a property
binding and an event binding. For example, the following syntax would display the value of
FirstName in the input element’s value field, and would also respond to the input event by

updating the property with the value the user entered.

Code Listing 139

<input id="FirstName" [value]="FirstName"

 (input)="FirstName = $event.target.value" />

While this will work properly, it requires a lot of extra work, and you duplicate the property name.
Fortunately, Angular provides a syntax that makes the binding a bit easier.

ngModel

The ngModel directive provides a simpler syntax for two-way data binding. It is found in the

Angular/forms library, so you will need to add the import to your app module file, and the

import metadata in the @ngModule declaration.

Code Listing 140

 import { FormsModule } from '@angular/forms';

Code Listing 141

imports: [BrowserModule,routing,FormsModule],

These two changes will allow components to use the ngModel directive to create data binding.

The basic syntax is:

 106

Code Listing 142

[(ngModel)] = "component property"

This shorthand directive performs the property and event binding (note the brackets and
parentheses) for your template. You will also need to make sure that the input element has a

name property as well, so Angular can properly map the component to the HTML element.

Code Listing 143

 <input type="number"

 [(ngModel)]="AwayScore" name="AwayScoreVal" />

The HTML name element does not have to match the component name; Angular just needs the

name element to perform the binding.

Summary

The binding techniques let you enhance your basic HTML in your template code to produce
displays and input of your component data. In the next chapter, we will combine these
techniques to create a component to record scores for our soccer club application.

 107

Chapter 17 Scoring

The scoring component allows a person to pick a game from the schedule, update the home
and away scores, and then save the updated scores back to the component. The scoring
screen is shown in the following figure.

Figure 17: Scoring Screen

The user selects a game, and the screen updates both team names as labels, and the team
scores as edit boxes. The user can then change the scores and click the Record Scores button
to save the updated scores (and possibly update the Standings view).

Scoring component

Code Listing 144

/* Scoring component */

import { Component } from '@angular/core';

 108

import { Title } from '@angular/platform-browser';

import { ViewEncapsulation } from '@angular/core';

// Our application services and interfaces

import { iSchedule } from '../interfaces/schedule';

import { SoccerService} from '../services/soccerService';

@Component({

 templateUrl: '../Views/scoring.html', // HTML template name

 styles: [` h3 {text-align:center;color:navy;

 font-size:x- large;margin:0px;font-weight:bold;}

 select { font-size:large;margin-left:25px;} `],

 providers: [Title,SoccerService]
 })

Scoring template

The scoring template is a simple HTML page where the scores can be recorded by the referee.

Code Listing 145

<h3>{{LeagueName}} </h3>

<form>
 <p>Season starts: {{ SeasonStart }} </p>
 <div class="container" [ngSwitch]="CurrentRole*10">
 <div *ngSwitchCase=10>Head Referee</div>
 <div *ngSwitchCase=20>Referee</div>
 <div *ngSwitchCase=30>Scorekeeper</div>
 <div *ngSwitchCase=40>Admin</div>
 <div *ngSwitchDefault>End User</div>
 </div>

This code simply changes the header based on the current role, so the type of user running the
page is displayed. You could use a similar approach to make certain features or options visible
based on the user admin level.

Code Listing 146

<p style="font-size:large;margin-left:50px;">Game:
 <select (change)="onSchedChange($event.target.value)">
 <option *ngFor="let currentRow of MySchedule"

 109

 value={{currentRow.id}}>
 {{ currentRow.HomeTeam +" vs "+ currentRow.AwayTeam }}
 </option>
 </select>
 </p>

This code uses the *ngFor directive to populate the drop-down box by iterating over an array. It

also binds the change event of the select element to an event inside the class code.

Code Listing 147

<div class="row">

 <div class="col-md-2"> </div>

 <div class="form-group col-md-3">

 <label for="HomeTeam"

 style="float:left;font-size:large;">{{HomeTeam}}</label>

 </div>

 <div class="form-group col-md-2">

 <input type="number"

 style="width:80px;float:right;text-align:right;"

 [(ngModel)]="HomeScore" name="HomeScoreVal"

 class="form-control" />

 </div>

</div>

<div class="row">

 <div class="col-md-2"> </div>

 <div class="form-group col-md-3">

 <label for="AwayTeam"

 style="float:left;font-size:large;">{{AwayTeam}}</label>

 </div>

 <div class="form-group col-md-2">

 <input type="number"

 style="width:80px;float:right;text-align:right;"

 [(ngModel)]="AwayScore" name="AwayScoreVal"

 class="form-control" />

 110

 </div>

 </div>

We then have code to display the home and away team names using interpolation and property
binding. This links the edit box value with the variable in the component.

Our final part of the template links the button click event to a method (which must be public)

inside the component.

Code Listing 148

 <button type="button" (click)="onRecordScores()"
 style="font-size:large;margin-left:50px;">
 Record Scores
 </button>
</form>

There are several data-binding elements within the HTML template to collect data and trigger
events within the component code. The (click) binding will call the onRecordScores()

method inside the component.

You will also notice some simple interpolations, such as HomeTeam and AwayTeam, for displaying

the selected team names as part of the screen display.

Class code

The class code for the scoring component performs several actions: it populates the schedule
array, detects when a user changes the drop-down box, and fills the score based on the
schedule information. It also has code to handle the record scores option when the user clicks
the button.

Variables

We declare several variables inside the component that we will use both for the component
itself and public variables for the template page.

Code Listing 149

private UsingAsync: boolean = false;

 private CurGame: number = 0;

 public MySchedule: iSchedule[];

 public LeagueName: string;

 111

 public HomeTeam : string;

 public AwayTeam : string;

 public HomeScore : number = 0;

 public AwayScore : number = 0;

 public SeasonStart: Date = new Date;

 public CurrentRole: number = 1;

Constructor

The constructor code updates some variables and specifies the service to be used throughout
the component.

Code Listing 150

 public constructor(private _soccerService: SoccerService) {

 this.LeagueName = "Over 30 men's league";

 this.getSchedule();

 this.SeasonStart.setTime(this.SeasonStart.getTime() +4 * 86400000);

 if (this.MySchedule.length>0) {

 this.UpdVariables(0); // Default to first game

 this.CurGame = 1;

 }

 }

Public methods

Any method that the template code references must be declared as public. We need two

public methods: one for the select box change, and another for the user clicking the button to
record the scores.

Code Listing 151

 public onSchedChange(GameValue:number) {

 if (GameValue>0)

 {

 this.UpdVariables(GameValue);

 this.CurGame = GameValue;

 112

 }

 }

 // Get the score from the form and update it

 public onRecordScores() {

 this.MySchedule[this.CurGame-1].AwayScore =
Number(this.AwayScore);

 this.MySchedule[this.CurGame-1].HomeScore =
Number(this.HomeScore);

 }

Private methods

The private methods are generally methods needed to support the component, but do not

need to be used outside the component body. We have a couple private methods in this

component.

Code Listing 152

 // Update screen variable based on current game

 private UpdVariables(GameID: number) {

 // Need to search Schedule array, looking for game ID

 var x : number = 0;

 if (GameID >0) {

 x = GameID-1;

 }

 this.HomeTeam = this.MySchedule[x].HomeTeam;

 this.AwayTeam = this.MySchedule[x].AwayTeam;

 this.HomeScore = this.MySchedule[x].HomeScore;

 this.AwayScore = this.MySchedule[x].AwayScore;

 }

 // Get the schedule (only showing games not yet scored)

 private getSchedule() {

 if (this.UsingAsync) {

 let xx = this._soccerService.getScheduleAsync();

 xx.then((Schedules:iSchedule[])=> this.MySchedule =Schedules
);

 113

 }

 else {

 this.MySchedule = this._soccerService.getSchedule();

 }

 }

If you update the scores, and then go back to the Standings page, you will see the changes
reflected in the standings, goals for, and goals against. For an actual application, you would
most likely write a web service and use the HTTP module to persist the changes to the back-
end database.

Summary

In this chapter, we looked at a simple example of getting data back and forth from the form to
the component, and responding to form events and button clicks.

 114

Chapter 18 Getting Data Using HTTP

Many applications use a database to persist the information the application has collected. It
could be Microsoft SQL Server, Oracle, or another database. In this chapter, we will cover how
to consume a web service to collect some data and possibly write it back.

Web services

The HTTP protocol was designed to allow requests to be sent to web servers and responses to
be retrieved from the servers. Browsers are designed to make requests of webpages, and
typically bring back complete webpages to the browser. When you enter a URL in a browser
address bar, such as www.syncfusion.com, the browser contacts the DNS server that looks up
the IP address for the website and sends a request to that website, which returns with a full
HTML webpage to display to the user.

A web service operates very similarly, except rather than return a full webpage, it typically
returns a small amount of formatted data that an application can then use as needed. The data
is generally formatted as XML documents or a JSON string. Angular works with JSON data very
well, and we will look at how to communicate using JSON-oriented web services.

JSON test website

The JSON test website provides a few sample web service calls that return JSON data. For
example, if you enter the URL http://ip.jsontest.com/ in your browser, you will not get a full
website back, but rather a JSON string with your IP, as shown in the following code.

Code Listing 153

{"ip": "127.0.0.1"}

Angular provides the functionality to make the API request and gets the returned data into your
application. There are thousands of APIs available. Many are free, but require you to get an
access key to use them.

JSON format

JSON (JavaScript Object Notation) is an open-source format for transmitting data objects. It is
designed to be both compact and readable by humans. Although JSON is language
independent, you can see its JavaScript roots.

http://www.syncfusion.com/
http://www.jsontest.com/
http://ip.jsontest.com/

 115

JSON elements consist of a property name and a value, such as the IP example in Code Listing
153. A JSON object may have multiple elements. The JSON object is delimited by { }, with the

collection of elements between the braces. For example, you might represent a person with a
JSON object of:

Code Listing 154

{ "name": "Jonathan" , "phone": "555-1212", "email":
jonathan@bitbucket.com }

The object is readable by both humans and computer applications. You’ve also seen some
JSON files in earlier chapters as you’ve set up the Angular environments.

The property values can be numeric, string, Boolean, or date values. You can also have a
collection of objects by nesting the objects with an outer set of { } characters.

You can make a collection of objects by providing an object name and the [] delimiters. Within

the brackets could be multiple objects. For example, the JSON in the following code represents
various phone numbers a person might have.

Code Listing 155

"PhoneNumbers" : [

 { "type": "home","areaCode": "215","number": "555-1212" },

 { "type": "mobile","areaCode": "610","number": "867-5309" },

]

The JSON structure provides flexibility to be as simple or complex as your application needs it
to be.

Web commands

Angular provides the HTTP module that allows you to perform the following basic web methods:

• GET: Retrieve data from a URL; query parameters can be used.
• POST: Like GET, except parameters are passed in the request body.
• HEAD: Like GET, but the server only returns the HTTP headers.
• PUT: Upload a file directly to the web server.
• DELETE: Delete a resource from the web server.

We are only going to focus on GET and POST, which are the most commonly used HTTP web

requests. If you’ve designed your web service, you can support the PUT and DELETE verbs, but

by their nature, they pose security risks.

 116

Angular HTTP

Angular includes a base library called @angular/common/http, which contains the methods

needed to make web calls. You will need to import the HttpClientModule from this library, as

shown in the following code. This would typically be done in the app.module code.

Code Listing 156

import {HttpClientModule} from '@angular/common/http';

Next, modify your component’s constructor to save the Http module, such as:

Code Listing 157

 constructor(private _http: HttpClient) {

 }

This is the basic setup you will need for components that will make HTTP requests.

Root module

Since we want the HTTP services to be available throughout the application, we can add the
Http module to our app.module.ts file, as shown in the following listing.

Code Listing 158

import { HttpClientModule } from '@angular/common/http';

…

@NgModule({

 imports: [BrowserModule, HttpClientModule],

Be sure to update your root module with these additions if they are not already there.

Web service

You should generally wrap the web calls in a service so they can be used by different
components as needed. For example, we are going to create a WebService class to handle all

the HTTP calls. You could import the WebService as a provider and save it to a private variable

during the constructor code.

Code Listing 159

import { WebService } from '../services/WebService';

 117

 @Component({

 providers: [SoccerService,WebService]

 })

export class AppScoring {

 public constructor(private _web: WebService) { }

At this point, the component has access to the service and will be able to use any of the
methods the web service chooses to provide. For our example, we are simply going to call the
IP method from the JSON test website and display the IP address in our template. With a few
tweaks, you could easily use this service to restrict access to certain sections of the template to
a whitelist of acceptable IP addresses.

Creating the web service

The web service will handle the actual interaction with the sites or API you wish to use. You
should start with the appropriate imports from the Angular libraries and from the Reactive
Extensions (RxJS) library.

Note: The Angular HTTP services rely on JavaScript observables, which is what
the RxJS libraries are designed to handle. In general, an observable is a way to
allow JavaScript to run asynchronously.

Web service imports

The WebService class will need the following imports to set up HTTP and the observables.

Code Listing 160

import { Injectable } from '@angular/core';

import { HttpClient } from '@angular/common/http';

Since it is a service, we will need to make it injectable and save the Http module during the

constructor.

Code Listing 161

@Injectable()

export class WebService {

 constructor(private _http: HttpClient) {

 }

 118

With this basic setup, we can start adding the various methods to make HTTP calls. Our first
method will call the ip.jsontest web service to get the IP address of the site visitor. This could

be useful for logging purposes or to whitelist access to certain areas of the website.

Code Listing 162

 private _IPURL: string = "http://ip.jsontest.com";

 public getIP (): {

 return this._http.get(this._IPURL);

 }

You could also create other public methods to pass a URL to call and return the results.

Code Listing 163

 public CallURL(_URL: string) {

 return this._http.get(_URL);

 }

You could also add different methods to extract object properties, depending on the structure of
the JSON data that is being returned.

Using the service

Assuming your component refers to the service as _web, we need to perform two steps. First is

to declare a component property to hold the results from the service.

Code Listing 164

 public IPAddr: string;

The second step is to subscribe to the service method. Keep in mind that the web service is
called asynchronously, so your TypeScript code will keep going after the call to the getIP()

method. The subscribe() method is basically telling the method: go off and do your thing, but I

want you to do something as soon as you are done—in this case, simply put the results into my
variable.

Code Listing 165

_web.getIP().subscribe((data:string) => this.IPAddr = data["ip"]);

Once the getIP() method completes (and returns the IP address), we tell the method to take

the results and put it into our IPAddr variable. In this, we are getting a simple string. We could

also define a class that matches the web service JSON structure and have the service copy the
entire JSON structure into an object created from our class.

 119

Passing parameters

There are two ways to pass parameters to a web service. You can pass them on the GET query

string if the parameters are part of the URL. For example, the jsontest site has a service that
will compute an MD5 from a given text string. If we pass the following URL:

Code Listing 166

http://md5.jsontest.com?text=AngularRocks

The site will return a JSON string, as shown in the following code.

Code Listing 167

{
 "md5": "c2690756861ba21dc367ab72b0621906",
 "original": "AngularRocks"
}

The only caveat to keep in mind is that the parameters passed on the query string must be
URL-encoded, and most browsers limit the URL length to 2,048 characters. Fortunately,
TypeScript includes a function that allows us to easily do URL encoding.

Code Listing 168

 public getMD5(str: string) {

 let finalUrl = this._MD5URL + encodeURI(str);

 this._web.CallURL(finalUrl).

 subscribe((data:string[]) => this.md5= data["md5"]);
}

The rest of the code to use the GET method and a query string parameter is the same. Don’t

forget to use the custom extraction method to get the proper JSON parameter.

Getting a collection

There may be times that you need to get a collection of objects, rather than just a single string
from the HTTP call. For example, we could create a file called teams.json and place it in our
assets folder.

Code Listing 169

[
 { "id":1,"name":"Old Menu United","type":"Over 30"},
 { "id":2,"name":"422 Nomads","type":"Over 30"},
 { "id":3,"name":"FC Dauntless","type":"Over 30"},

 120

 { "id":4,"name":"Kellie's Kickers","type":"Over 30"},
 { "id":5,"name":"Blue Devils","type":"Over 30"},
 { "id":6,"name":"Torn Achilles","type":"Over 30"}
]

We would now adapt our HTTP call in the web services module to return a collection, rather
than a general object. You can also return a single object, simply by specifying the interface
name rather than the collection syntax (shown in Code Listing 170).

Code Listing 170

 public getTeams()
 {
 let _TeamURL: string = "assets/teams.json";
 return this._http.get<iTeam[]>(_TeamURL);
 }

Now, when the getTeams() method is called, it will attempt to shape the data into a collection of

team objects. You can create a Teams collection in the component, and pass the results of the

getTeams() call to a function. This function can assign the result to the Teams collection

variable. By going through a function, you can provide other code that might need to be done
once the web service call is completed.

Code Listing 171

{

 …

 _web.getTeams().subscribe((data) => this.LoadTeamList(data))

}

private LoadTeamList(data) {

 this.Teams = data;

 // Other tasks to do

 }

Tip: Writing a method to gather the data gives you more flexibility than simply
assigning the data with the subscribe call.

Error handling

The second parameter to the subscribe() is the function to call if an error occurs.

 121

Your component code can access the error by checking for it during the subscribe call, as

shown in the following code example.

Code Listing 172

_web.getIP().subscribe((data:string) => this.IPAddr = data["ip"],

Error => this.ErrMsg = Error.message);

This will copy the error message to the component string property called ErrMsg. You could

optionally display it in your template using the *ngIf directive, but the error message might not

be meaningful to the end user.

The Error object has several additional properties (as shown in Code Listing 173), such as the

HTTP status code and text, the original URL requested, and more. You can capture these
properties by saving the full error object, rather than just the text message, to a component
property.

Code Listing 173

 "status":404,

"statusText":"Not Found",

"url":"http://localhost:4200/assets/teams.json",

"ok":false,

"name":"HttpErrorResponse"

Summary

The HTTP module makes web service and API calls simple— just remember that the calls are
asynchronous, so you need to subscribe to get the results. This will allow your application to run
quickly, even as it reaches out to other sites for JSON information.

 122

Chapter 19 Summary

Angular is a powerful framework for developing applications. In this ebook, we explored enough
of the framework to create a simple application, and I hope it whets your appetite for what is
possible. I suggest keeping the following websites bookmarked and visiting them periodically to
stay on top of the new features of both Angular and Angular CLI.

Figure 18: Angular Home Page at https://angular.io

Figure 19: Angular CLI Home Page at https://cli.angular.io

And of course, keep the Syncfusion website bookmarked to find a large, free library of ebooks to
stay on top of the ever-changing world of application development.

Enjoy!

https://angular.io/
https://cli.angular.io/
http://www.syncfusion.com/
https://angular.io/
https://cli.angular.io/

 123

Appendix 1 Component Metadata

Each Angular component has metadata associated with it, providing at minimum two pieces of
information: the location (selector) on the HTML page, and the template to add to the page.

Some of the key component metadata options are shown in the following table.

Directive Purpose

selector CSS selector that identifies where the component template code
should be added.

providers Array of the various dependency injection providers for this component.

template String that contains template code to inject. Can use backticks to insert
multiline templates.

templateUrl A reference to a template stored in an external HTML page.

styles An array of style elements to be added inline to the template.

styleUrls An array of CSS style sheets that should be injected into the
component’s template.

encapsulation You can set the encapsulation method for the component using one of
the following options:

• Native: Use Shadow DOM, supported by new browsers.

• Emulated: Emulate Shadow DOM by renaming CSS elements to

scope the CSS to the component.

• None: No encapsulation. CSS is added directly to HTML stream

(necessary for older browsers).

You will need to import the View Encapsulation module from Angular
core to access the enum of encapsulation types:

import {ViewEncapsulation} from '@angular/core';

 124

Appendix 2 Template Syntax

The template of HTML and enhanced Angular features will be the main source for your
application’s UI features. This appendix has a summary of the template options. A template
generally consists of HTML and multiple bindings.

Syntax Purpose

{{component_variable}} Replaces expression between the {{ }} with content of

the named component variable.

(event_name)=method Binds event (click, change, focus, etc.) to the named

component method. Optionally add $event for event

parameters.

{{expression}} Replaces content between {{ }} with the string result of

evaluating the expression.

[value]="variable" Binds the property value (text elements) to the component
variables.

[attr.name]="string" Binds the HTML attribute name to the indicated value.

[class.special]=Boolean Adds the special class to element if Boolean value is

true.

Directives

*ngIf="expression" Adds or removes DOM content based on the Boolean
value of the expression.

*ngFor="Let x of list" Loops through the list, assigning each element to x.

[(ngModel)]="property" Performs two-way binding with property name in
component. Requires the forms module.

*ngSwitchCase Returns different results depending on value of ngSwitch.

E.g.:

[ngSwitch]="AdminFlag"

<div *ngSwitchCase=2>Super Admin</div>

<div *ngSwitchCase=1>Admin</div>

<div *ngSwitchDefault>Regular User</div>

	Table of Contents
	The Story behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	Note on Angular Succinctly
	About the Author
	Chapter 1 Introduction
	CSS styling
	JavaScript coding
	Third-party libraries
	The good
	The bad

	Why AngularJS?
	Angular 2
	ECMAScript
	TypeScript
	Dependency injection

	Angular versions
	Versioning

	Web components
	Without web components
	Web components
	Shadow DOM
	Template tag
	Getting content from the host

	Summary

	Chapter 2 Dev Environment
	Language
	Editor
	Node Package Manager (NPM)
	Installing NPM
	Confirming NPM
	Installing packages

	Summary

	Chapter 3 Angular CLI
	Getting Angular CLI
	Creating a new project
	Project root
	src
	src\app

	ng serve
	ng build
	Environments folder

	Summary

	Chapter 4 Files and Folders
	Folder structure
	GitHub files
	.gitignore
	README.md

	.editorconfig
	angular.json
	Settings
	projects section
	architect section

	package.json
	Package information
	Scripts
	License
	Dependencies
	devDependencies

	tsLint.json
	src folder
	tsConfig.json

	Summary

	Chapter 5 Customization
	Adding libraries
	angular.json
	Font Awesome

	Assets
	Environments
	Summary

	Chapter 6 Your Environment
	Your folder structure
	Summary

	Chapter 7 Exploring Hello World
	Start Angular CLI
	Import statement
	@Component statement
	Export statement

	Modules
	Declarations array
	Imports array
	Bootstrap array

	Our main program
	Index.html
	Style sheets
	Body
	Styles.css

	Summary

	Chapter 8 Tweaking It a Bit
	ng serve
	Summary

	Chapter 9 Components
	Component files
	import
	Metadata
	selector
	template
	templateUrl
	styles
	styleUrls
	encapsulation

	Class code
	Properties
	Accessors
	Get accessor
	Set accessor
	Constructors
	Class methods

	Summary

	Chapter 10 Templates
	Template declaration
	HTML
	Interpolation
	Expressions
	Pipe operator
	Custom pipes
	Creating the pipe class
	Using the custom pipe

	Template statements
	Displaying data in templates
	Arrays
	Interfaces
	Classes
	Conditions
	Switch statement
	Looping

	Summary

	Chapter 11 Modules
	Basic module options
	declarations
	imports
	providers
	exports
	bootstrap

	app.module.ts
	main.ts
	Summary

	Chapter 12 Our Application
	Screen mockups
	Standings page
	Scorekeeper’s page

	Summary

	Chapter 13 Menu Navigation
	Base href
	App component
	Views folder
	Main menu

	Placeholder components
	Route definitions
	Path
	Component

	app-routing.module.ts
	App module
	Default route
	Page not found

	Navigation
	Summary

	Chapter 14 Services and Interfaces
	Standings page
	Data model
	Database design
	teams table
	refs table
	schedule table

	Service design
	Interfaces
	Service code
	Getting the data
	Schedule-data.ts

	Injectable
	Consuming the service
	Importing the service
	Adding the provider metadata
	Update the constructor
	Using the service
	App.standings

	Summary

	Chapter 15 Standings
	Standings component
	Template page
	Class code
	getSchedule()
	ComputeRankings

	Standings display
	Summary

	Chapter 16 Editing Data
	Data binding
	Property binding
	Attribute binding
	Event binding
	Class binding
	Style binding
	One-way binding summary

	Two-way binding
	ngModel

	Summary

	Chapter 17 Scoring
	Scoring component
	Scoring template
	Class code
	Variables
	Constructor
	Public methods
	Private methods

	Summary

	Chapter 18 Getting Data Using HTTP
	Web services
	JSON test website

	JSON format
	Web commands
	Angular HTTP
	Root module
	Web service
	Creating the web service
	Web service imports

	Using the service
	Passing parameters
	Getting a collection
	Error handling

	Summary

	Chapter 19 Summary
	Appendix 1 Component Metadata
	Appendix 2 Template Syntax

